xpointer(//EPISODE)
<a href="test.xml#xpointer//name[1]>
<xi:include href=" /db/shakespeare/plays/macbeth.xml#xpointer (//SPEECH[SPEAKER&='witch' and near(LINE, 'fenny snake')])" />
xmllint --xinclude includes.xml > output.xml
(le fichier "includes.xml" contient le XInclude)
(cf. page suivante)
<?xml version="1.0" encoding="ISO-8859-1" ?>
<book xmlns:xi="http://www.w3.org/2001/XInclude">
<xi:include href="intro-kiah.xml"/>
<xi:include href="paper6.xml"/>
<xi:include href="http://tecfaseed.unige.ch/staf18/modules/ePBL/uploads/proj3/paper81.xml"/>
..... </book>
<?xml version='1.0'?>
<document xmlns:xi="http://www.w3.org/2001/XInclude">
<p>This document has been accessed
<xi:include href="count.txt" parse="text"/ > times.</p>
</document>
<price-quote xmlns:xi="http://www.w3.org/2001/XInclude">
<prepared-for>Joe Smith</prepared-for>
<good-through>20040930</good-through>
<xi:include href="price-list.xml" xpointer="w002-description" />
<volume>40</volume>
<xi:include href="price-list.xml" xpointer="element(w002-prices/2) "/>
</price-quote>
<?xml version="1.0" encoding="ISO-8859-1" ?>
<?xml-stylesheet href="ePBLbook10.xsl" version="1.0" type="text/xsl"?>
<!DOCTYPE book SYSTEM "ePBLpaper11.dtd"
[
<!ENTITY intro SYSTEM "intro-iris.xml">
<!ENTITY file7 SYSTEM "paper7.xml">
<!ENTITY file8 SYSTEM "paper8.xml">
<!ENTITY file9 SYSTEM "paper9.xml">
<!ENTITY file10 SYSTEM "paper10.xml">
<!ENTITY file12 SYSTEM "paper12.xml">
<!ENTITY file13 SYSTEM "paper13.xml">
<!ENTITY file14 SYSTEM "paper14.xml">
]>
<book>
&intro;
&file7;
&file8;
&file9;
&file10;
&file12;
&file13;
&file14;
</book>
<b>Corollary 2</b> [Contractive Sequence Theorem] <em>If
<math xmlns='http://www.w3.org/1998/Math/MathML'><mo>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>)</mo></math> is a sequence, for which there is a number <math xmlns='http://www.w3.org/1998/Math/MathML'><mi>C</mi><mi><</mi><mn>1</mn></math> such
that <math xmlns='http://www.w3.org/1998/Math/MathML'><mo>|</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>-</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>|</mo><mo>≤</mo><mi>C</mi><mo>⋅</mo><mo>|</mo><msub><mi>x</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>-</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>|</mo></math>, then <math xmlns='http://www.w3.org/1998/Math/MathML'><mo>(</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>)</mo></math>