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Abstract

We identify several challenges faced by current deep learning models that aim to understand natural language,
particularly when the machine needs to comprehend lengthy discourse such as narratives and in tasks requiring
reasoning with content. Many of these issues are equally significant in the processing of visual content and multi-
modal tasks, such as video understanding or story-to-video generation. To address these challenges, we compare
how machines process content with what is known about the language and multimodal processing mechanisms
of the human brain. This comparison leads to potential solutions for improving machine understanding, including
modifications to model architectures, training methods and inference strategies. These modifications emphasize
representations that model contextuality, identity and situational knowledge.
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1. Introduction

Understanding is often defined as comprehension, that is, to have a clear or complete idea of the
content that is understood.! In this paper we aim to reflect on representation learning with deep neural
networks for the purpose of natural language understanding (NLU) and beyond. We focus on natural
language understanding of narratives. NLU has evolved significantly over time, and it is essential
to reflect on its progress both in the past and in the present. However, this progress brings with it
challenges, prompting the question: what are the persistent problems in NLU? By examining how
humans understand language and the surrounding world, we can gain valuable insights that can guide
future advancements in NLU of narratives.

2. NLU now

Currently, foundation models serve as a basis for artificial intelligence research. They are trained on
extensive datasets, such as natural language data or language paired with images [1]. They are trained
in a self-supervised manner by masking and reconstructing the masked content as output (see [2] for an
overview). More specifically, they are self-trained with neural models by predicting randomly masked
content or by anticipating content in a sequential stream of tokens [1]. Foundation models store in
their parameters the patterns they have observed in the training data. Their common transformer
architecture enables the incorporation of contextual information refined through its attention weights.
The models provide priors on how tokens are combined in a language, or on how visual patches co-occur
in the physical world [3]. The resulting content representations contain structural knowledge (e.g., how
tokens are syntactically combined, how objects are spatially configured, how actions likely follow each
other and what their consequences in time are). Therefore, they hold highly valuable knowledge.
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'Merriam-Webster: to comprehend: to grasp the nature, significance, or meaning of; to contain or hold within a total scope,
significance, or amount; to include by construction or implication.
*This work is partially based on a keynote lecture given at the Northern Lights Deep Learning Conference 2025.
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Deep learning provides continuous vector representations of words and sentences by keeping track
of contextual information from large textual corpora. Consequently, the foundation models store the
massive content in the latent representations of the network efficiently as vectors with continuous
values. Commonly, they are trained with neural transformer architectures characterized by attention
layers [4] that model correlations between content elements (e.g., between the sub-words or tokens of a
natural language text, between the tokens of language and regions in an image). This processing results
in contextual representations of the content elements that effectively capture the meaning of elements
where their context acts as constraints. This makes foundation models general knowledge stores of
the physical and social world they have observed during training or of domain-specific knowledge
when trained on domain-specific sources. The resulting representations form the foundation of many
successful tasks such as language generation, and image and video diffusion.

The resulting content representations model contextuality in an excellent way. Note that contextuality
has many different meanings, but we adopt the meaning used in linguistics, that is, related to the context
of something that provides resources for its appropriate interpretation. Regarding language modeling,
the vector representations support the hypothesis of distributional semantics stating that semantically
similar words have similar contextual distributions. As a result, foundation models already demonstrate
a good degree of conceptualization and generalization through inductive training on large data sets
[5]. Even if certain content is not seen in the training data, we can infer its meaning based on other
content of which the context is similarly distributed [6, 7]. Apart from syntactic and semantic patterns
of language, foundation models store a substantial amount of common knowledge of things in the world,
among which are properties, relationships, and interactions of objects, which humans are expected
to know, and world knowledge (referring to facts about the people, events and objects seen during
training) [8, 9].

The content representations (e.g., the vector representations in the neural network layers obtained
after the self-training) form the foundation of many downstream generation and understanding tasks in
natural language processing. These tasks require varying levels of model supervision through examples
annotated with ground truth labels or by querying the foundation model by instructional prompts.
Because of the computational complexity of finetuning a full-fledged foundation model with annotated
examples, techniques of parameter efficient finetuning were developed. They focus on the most relevant
parameters of the model in the optimization process either by introducing new parameters or freezing
the entire model except for selected parts. For example, adapters add extra layers to the existing
transformer architecture and only finetune these. An adapter layer uses a bottleneck architecture that
projects the input to a smaller dimension, applies a non-linear activation function, and then scales it
back up to the input’s original dimension [10]. Low-Rank Adaptation (LoRA) injects trainable low-rank
matrices into each transformer layer [11]. Recently, we have introduced feature routing functions that
aid feature selection through the low-rank bottleneck [12]. Apart from transformer architectures, we
currently see a resurgence of recurrent neural networks in the form linear-time sequence modeling
(MAMBA) [13]. They integrate the idea of a selective state space model to effectively select data (i.e.,
focus on or ignore particular inputs) and of a linear RNN to model contextuality and to boost efficiency
by a parallel scan algorithm for computing the recurrences.

3. NLU then

Natural language understanding (NLU) by a machine is one of the oldest goals of artificial intelligence
(AI). Since its early days the field was concerned with building effective representations (e.g., [14]).
Past research in natural language understanding has promoted symbolic representations composed of
discrete predicates and arguments, often using first-order logic or lambda expressions with variable
binding [15]. This formalism can both generalize concepts and relationships, and represent instances of
persons, objects and attributes. However, it struggles with scalability due to reliance on handcrafted
rules or annotated language for training models that translate natural language into an expressive
formal symbolic language covering all possible scenarios. Additionally, symbolic representations



have difficulties in representing the fine-grained contextual meaning of language content [16]. These
problems are only aggregated when processing long discourses such as narratives, hence the current
focus on relying on large language models or other foundation models to process language.

4. What are then the problems?

Foundation models store in their parameters the patterns they have observed in the training data in a
very efficient way. They remember the content on which they are trained which facilitates the retrieval
of this content, but they do not reach human intelligence, that is, to correctly interpret all possible new
situations and circumstances [17], to capture long tail knowledge [18] and to correctly model situations
[19]. These properties are crucial for processing lengthy narrative discourse. The retrieval is made more
accurate by extending the models, that is, extending the contexts that are captured (as done by, e.g.,
Gemini 1.5 Pro models), the amount of train data, and consequently the number of trained parameters
of the models. True understanding of natural language requires functional linguistic competence,
that is, the cognitive abilities needed to truly interpret language and infer its real-world implications
[19]. One important ability is situation modelling, which refers to the dynamic tracking of individual
protagonists, objects, locations, and events as a (long) narrative or conversation unfolds over time [20].
A situation model is a mental representation of the people, setting, actions and events described in
explicit statements in language or inferred through world knowledge [21].

To model their tracking, referential relations that connect entities (such as people and objects) and
events across sentences are important. As seen above, foundation models and deep neural networks
in general naturally model context and integrate it in their representations. The current models have
problems in modeling identities. Identity refers to the distinguishing character or personality of
an individual but can be expanded to animals, objects, etc. The models have trouble with making
inferences with individual variables and tracking their situation when the narrative unfolds over time
[22], whether they are protagonists, objects, locations or events. This problem has resemblance to
the “binding problem” of neural networks described by [23], that is, their inability to dynamically and
flexibly bind information that is distributed throughout the network and to acquire a compositional
understanding of the world in terms of symbol-like entities. As a result, the models need annotated
training examples or carefully designed prompts (e.g., as extra supervision to learn a downstream task or
as example prompts in an in-context learning setting). For instance, [24] realize recognition of identities
and instantiation of variables through prompting with human-drafted examples. Failing instantiation
hinders deductive inference and abductive inference [22, 25], which is needed in the understanding of
narratives.

We postulate that to really deal with the problem of situation modeling and instantiations of protago-
nists and objects so these can be tractable as events unfold over time, we need novel ways of training
the neural models and to learn representations while keeping the rich contextual representation power.
Moreover, while learning such representations, we need to design ways to efficiently and effectively
leverage the factual and commonsense knowledge of current foundation models. Finally, as events
and their participants change over time, we need contextual representations that dynamically adapt
through inference with the individual situations of the discourse. Existing entity-centric representations
focus on person names and speakers in a dialogue setting [26] but do not attempt to model situations.
Knowledge graphs possibly extended with a graph attention mechanism used for representing entities,
relations and situations miss the fine-grained contextual information expressed in a discourse and form
only a summarized representation of the discourse (e.g., [27]).

Time and place are important pillars of situation modelling. Situations dynamically change over time
through the actions that are performed by persons and other actors, and involved actors and objects
change location. True language understanding should be able to answer questions about their location
at each moment in time covered by the discourse, about the time an action is performed, about sizes
and distances between objects in a certain context, about the durations of actions in a certain context,
about the postconditions of actions and their consequences on the location of actors and objects, etc.



Past research mainly focused on translation of language into structured symbolic representations that
express spatial and temporal relationships between extracted objects and events or time expressions,
respectively (e.g., [20, 28]). Reasoning was conducted using the symbolic representations to deduce the
specifics of a situation that often were not explicitly stated in language (through inference mechanisms
in a knowledge graph or by means of an external solver). The lack of sufficient annotated training
data hindered the widespread adoption of these methods. More importanly, symbolic representations
often lack fine-grain contextual semantics that might be different according to the discourse context.
Hence, the current interest in neuro-symbolic methods, where the challenge is in effectively integrating
neural and symbolic computation for learning and reasoning from raw data. For example, [29] finetune
a foundation model for question answering that jointly learns the spatial rules of a game, but these
models are restricted to specific domains due to scalability issues (combinatorial explosion in symbol
grounding). Finally, the following works translate logical constraints into differential forms, using these
constraints in the loss functions [30, 31].

Nowadays, foundation models serve as a backbone for spatial and temporal language understanding,
often finetuned for their use in specific domains. Especially the vision-language foundation models have
proven to capture spatial commonsense knowledge that is not always present in large language models
(e.g., sizes of objects, distances between objects in a certain context, common locations of objects) [32].
It is expected that the emerging video-language foundation models (e.g., MERLOT Reserve [33]), will
even better integrate physical knowledge to aid temporal language processing and spatiotemporal
inference (e.g., regarding duration of actions, changes in location of objects, etc.). However, foundation
models still exhibit many shortcomings when it comes to reasoning with spatial common sense [34].
For example, the inadequate spatial reasoning of models in scene generation by diffusion models, visual
question answering, and in vision and language reasoning highlights the need for better representations
of spatiotemporal situations [20]. This is especially important for embodied Al models that can interact
with the physical environment, but equally crucial in machine understanding of a narrative discourse.
Also, the temporal grounding of events on a timeline remains a major problem [28].

Similar problems are encountered in video understanding and text-to-video generation.

The many characters in a movie are involved in different actions and events. Training on long
discourses, especially video, is computationally very expensive because of a combinatorial explosion of
sequences of possible actions and events. Also in this context we need advanced models that represent
identity and situations in a efficient way, without loosing contextuality. Because of the computational
complexity of processing video data, learning representations that integrate identity information and
are able to represent dynamic situations are even more challenging than when dealing with textual
narratives.

In story-to-video generation where we translate a textual story into a video, we currently rely on
diffusion models. However it remains very hard to consistently generate the same appearances for
the same character in the story. Current research focuses on how to consistently generate the same
dog if the story is about my dog (see: https://www.youtube.com/watch?v=vPPryjwTiw), how to
consistently generate the same objects in a scene, how to consistently generate the same background or
detect that another background needs to be generated, and how to control changing objects, attributes,
locations, postconditions of actions (e.g., [35, 36]), etc. In other words we investigate how to build
neural representations that capture identity and their context to be used in the diffusion process when
generating the video.

5. What can we learn from understanding of language by humans?

The language network of the human brain operates within a receptive window of a few words [37]. It
supports the retrieval of individual word meanings and facilitates combinatorial syntactic and semantic
processes within that window. This aspect of the human brain is well captured by current large language
models.

The default mode network of the human brain is responsible for connecting information across



sentences and to construct a coherent narrative or dialogue representation [37]. Some brain scientists
argue that local chunks of linguistic structure are incrementally processed in increasingly abstract
levels of representation guided by anticipated content [38, 39, 40, 41].

With regard to identity, cognitive scientists argue that certain human capabilities are innate and
learned during evolution. They regard, for instance, the detection and tracking of persons, faces, and
animals, as well as inanimate objects and numbering. Humans and certain mammals use a unique name
to distinguish between persons, animals and objects of the same type [42, 43].

For a long time, cognitive scientists have identified various types of event indices, including protago-
nists, temporality, causality, and spatiality [44].

The human brain continuously predicts or samples from a hierarchy of representations when reading
or hearing language, where the anticipated content is often visually rendered. One assumes that
the temporal receptive windows of language show sensitivity to varying context lengths. The set
of hierarchically organized representations evaluate the current text input and might facilitate belief
revision by humans when understanding language [43].

The above capabilities of the human brain are not or only partially realized by current NLU models.

6. Potential solutions

In this paper we postulate that translating a narrative discourse or natural language in general into a
structured representation which comes close to a symbolic representation, such as a knowledge graph
that allows embeddings of entities and reasoning based on the graph topology, is not sufficient to solve
the above problems, because such representations lose important fine-grained contextual information.
On the other hand, we see a lot of potential in expanding current deep learning models with graph based
characteristics such as modeling identity, coreference relationships and spatio-temporal semantics.

A first requirement is that identity and coreference information becomes integrated in the represen-
tations.

A first way is to add such information in the prompts that are used to query a discourse. In this
respect [45] propose to train a model that detects coreferring entities in a dialogue and that adds an
identity number representing the entity cluster to entity mentions in the dialogue. The classifier predicts
transition functions that guide the generation of the text and its entity cluster in a sequence-to-sequence
generation set-up. This approach could also be applied to a narrative discourse. It basically augments
the mention of entities in a text with their entity coreference information, after which the representation
of the augmented text can be used in a question-answering task.

Another approach is to represent the entities as additional tokens when processing a discourse. This
could be realized by modeling a separate memory or by integrating this information as specific learnable
tokens or embeddings in the model.

An example of the former is [46]. Here memory storage is explicitly segregated from the computation
of the neural network as suggested by [47]. The idea is to store or write long-term and short-term
context into a memory. The model iteratively (e.g., with multiple hops) reads relevant information from
the memory to answer a question about the discourse. Memory addressing is guided by an attention
mechanism usually performed by a controller. Such a method combines successful machine learning
strategies for inference with a memory component that can be read and written to. The model is trained
to learn how to operate effectively with the memory component. In [46] a model is fed with a stream of
data X, incrementally processed to fill a memory M. Such memory is used to obtain question-related
@ clues to provide an answer A. Pretext self-supervised tasks improve memorization by continually
rehearsing and anticipating coreference information. The memory module consists of a self-attention
and a cross-attention layer that fuses the information from input to memory at each time step. It also
uses a gating mechanism to allow it to forget. The output decoder takes the question () and the last
memory state M as inputs to obtain the answer to a question.

Another inspiring example is found in [48] where the authors model entities and their relations in
a text-graph transformer model. They do so by adding new tokens in the textual input, which are



designed to aggregate information via explicit graph relations in the computation of attention weights
forming a joint text-graph transformer model.

As the narrative discourse unfolds we need to represent and track entities through time. The field of
computer vision might give some inspiration. For instance, object-centric representations of complex
scenes in computer vision are instructive [49]. In this work, slot-attention mechanisms provide a
differentiable interface between observed entity mention representations and a set of variables called
slots. But the approach is currently only applied in simple synthetic settings. A challenging part
is to accurately and efficiently model the attributes in the actor- and object-centric representations,
their actions and circumstances, that is, modeling their contextual information, so that they minimize
redundant information. Another problem asking for solutions regards dealing with entities or objects
that appear and disappear in the discourse. When you eat a peeled banana, the banana is gone afterwards.
Here recent work that emulates the genesis and evolution of biological cells with an artificial neural
network might be inspiring (e.g., [50]).

It remains very challenging to represent dynamic situations of the narrative through time. As the
narrative unfolds, some context changes, while at other moments in time the context remains the same.
A significant challenge here again is the implicitness of language making the specific location of a
person/object at a point in the discourse unobserved. We humans rely on our world knowledge to
reconstruct the situation. There is the potential of hidden physics neural networks [51] that work with
variables in loss functions that are unobserved or difficult to measure in the training data, so the value
of the unobserved variable is inferred from observed data and past states, and the former is then used
as ground truth. We might simulate trajectory paths of objects through time with a neural network
with the initial state (location) of an object as input, while only a final location is known [52]. During
training different paths of possible locations through time could be generated, and the model learns to
select one or more trajectories upon the availability of new evidence (in a kind of belief revision way).

The above also entails that the representations that the machine builds of the situation at hand
is continually changing as the discourse unfolds, in a way similar to the updates that humans make
with regard to their mental representation when comprehending narratives [53]. In the latter case, at
significant coherence breaks of the narrative, the representation is fully reconstructed, while during
model updating, the existing representation is partially updated with only specific elements adjusted
through inference processes. During model construction at major coherence breaks, an event model is
entirely reconstructed, whereas during model updating, the existing event model is retained, with only
certain elements modified through inference processes.

When the machine processes narrative content, there is also the need to represent and to anticipate the
content at different layers of detail and abstraction. In this respect recent unsupervised models that learn
to plan for language modeling are inspiring (e.g., [54]) as they can explicitly address the hierarchical
nature of language. Although such an approach is developed for text generation, the unsupervised
abstraction of content that these models propose is valuable when storing content previously perceived
in a discourse or to anticipate what could come next. Typically, such models represent abstract content
by embeddings stored in codebooks that might be trained a priori and possibly adapted during training
of the language model. However, it remains unclear which content segments are best abstracted
and at which level of detail or compression, while keeping this abstraction scalable especially when
dealing with a lengthy discourse, and how to dynamically update such representations as the discourse
progresses.

The above especially relates to machine understanding of narratives that focuses on grounding of
language in the physical world and on comprehending the physical implications of what is communicated
in language. Grounding of language in the social world and comprehending its social implications (e.g.,
[55]) opens another large venue of future research, which we did not cover in this paper.

The proposed solutions could also lead to novel ways of training foundation models that integrate
situational knowledge much better than is done now, among which are the learning of representations
of individual characters and objects, abstractions of events, and their temporal, spatial and causal
relationships.



7. Conclusion

We reviewed recent deep learning work on narrative understanding, discussed its shortcomings in
handling key narrative phenomena (e.g., object trajectories, identity, and appearance/disappearance),
and suggested potential solutions inspired by other domains. The paper gives a good sense of the issues
involved with bridging the gap between (a) specialized architectures that are able to handle narrative
phenomena well but only in restricted domains or on synthetic text and (b) more general architectures
and foundation models that perform well overall but have deficiencies regarding narrative phenomena.
We hope that this paper inspires future research on comprehension of narrative content by a machine.

We especially focused on the comprehension of narrative text and the learning of suitable represen-
tations for this task. Many of the insights might also be applicable to other tasks such as the machine
understanding of narrative video. If we find suitable solutions, the resulting representations could also
have an impact on generation tasks such as story-to-video generation.
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