
The distribution of pedagogical roles

 in a multi-agent learning environment.

P. Dillenbourg, P. Mendelsohn and D. Schneider

TECFA, Faculty of Psychology and Education, University of Geneva.

We describe a learning environment (MEMOLAB) that illustrates the distribution of roles
among several agents. The learner solves problems in interaction with an expert, i.e. an agent
who is able to solve the same problems through the same interface. The degree of assistance
provided by the expert is tuned by another agent, the tutor, which monitors the interaction.
MEMOLAB includes several tutors corresponding to various teaching styles. These tutors are
selected by their superior, called ‘the coach’. This distribution of roles between the agents has
been conceived in such a way that some agents (the tutors and the coach) are not directly con-
cerned by the specific teaching domain and hence can be reused to build other learning envi-
ronments. The set of domain-independent components constitute ETOILE, an Experimental
TOolbox for Interactive Learning Environments. Its originality is that authors do not build a
software application by writing questions and feedback, but by designing domain-specific
agents that will interact with the agents provided by the toolbox.

1. Introduction
The term ‘intelligent learning environment’ (ILE) refers to a category of educational software in which the
learner is ‘put’ into a problem solving situation. A learning environment is quite different from traditional
courseware based on a sequence of questions, answers and feedback. The best known example of a learning
environment is a flight simulator: the learner does not answer questions about how to pilot an aircraft, he
learns how to behave like a “real” pilot in a rich flying context. Experience with learning environments (like
LOGO) showed that those systems gain efficiency if the learner is not left on his own but receives some
assistance. This assistance may be provided by a human tutor or by some system components. In our flight
simulator example, the future pilot would gain from discussing his actions with an experienced pilot. In
summary, we use the word ‘intelligent learning environment’ for learning environments which include (1)
a problem solving situation and (2) one or more agents that assist the learner in his task and monitor his
learning.

This chapter describes how we distributed roles among agents in such a way that part of the pedagogical
knowledge encapsulated by the agents could be reused for building other ILEs. We present two systems:

• MEMOLAB is a particular learning environment for the acquisition of basic methodological skills
in experimental psychology.

• ETOILE (Experimental Toolbox for Interactive Learning Environments) is a toolbox that enables
advanced programmers to build an ILE in another domain, but based on the same principles and ar-
chitecture as MEMOLAB.

We started with the design and the implementation of MEMOLAB and we progressively abstracted the tool-
box called ETOILE. It could appear more logical to build first the authoring tool and then to use it for cre-
ating an ILE. However, in this case, the researchers have to start with the over-general question: “What
functionalities are shared by any educational software?”. This approach generates constraints at a high level
that unavoidably lead to a set of neutral interface tools and to procedures for specifying the sequence of
learning activities. By proceeding inversely, we succeeded in designing a generic tool which encapsulates
pedagogical knowledge.

ETOILE is not a proper authoring tool, with an author interface. It is a prototype to be used by programmers
with advanced programming skills in Common Lisp. It provides them with the bricks of an ILE, but it is the
author’s task to assemble them into a coherent system. It supports the design process, it does not automate it.

ETOILE and MEMOLAB are implemented with Allegro Common Lisp and run on Sun Sparcstation. Since
the whole systems are based on an object-oriented approach, we use the object-oriented features of Com-
mon Lisp, i.e. CLOS. For the interface functions, we use the beta-release of the ‘Common Lisp Interface
Manager’ (Clim 2.0). A full description of these systems can be found in Dillenbourg et al. (1993).


