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Abstract

The importance of learning in multi-agent environments as a research and
application area is widely acknowledged in artificial intelligence. Although
there is a rapidly growing body of literature on multi-agent learning, almost
nothing is known about the intrinsic nature of and requirements for this kind
of learning. This observation is the starting point of this chapter which aims
to provide a more general characterization of multi-agent learning. This is
done in an interdisciplinary way from two different perspectives: the
perspective of single-agent learning (the ‘machine learning perspective’) and
the perspective of human-human collaborative learning (the ‘psychological
perspective’). The former leads to a ‘positive’ characterization: three types
of learning mechanisms - multiplication, division, and interaction - are
identified and illustrated. These can occur in multi-agent but not in single-
agent settings. The latter leads to a ‘negative’ characterization: several
cognitive processes like mutual regulation and explanation are identified and
discussed. These are essential to human-human collaborative learning, but
have been largely ignored so far in the available multi-agent learning
approaches. Misunderstanding among humans is identified as a major source
of these processes, and its important role in the context of multi-agent
systems is stressed. This chapter also offers a brief guide to agents and
multi-agent systems as studied in artificial intelligence, and suggests
directions for future research on multi-agent learning.
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1. Introduction: What is intrinsic to multi-agent learning?

Learning in multi-agent environments1 had been widely neglected in artificial
intelligence until a few years ago. On the one hand, work in distributed artificial
intelligence (DAI) mainly concentrated on developing multi-agent systems whose
activity repertoires are more or less fixed; and on the other hand, work in machine
learning (ML) mainly concentrated on learning techniques and methods for single-agent
settings. This situation has changed considerably and today, learning in multi-agent
environments constitutes a research and application area whose importance is broadly
acknowledged in AI. This acknowledgment is largely based on the insight that multi-
agent systems typically are very complex and hard to specify in their dynamics and
behavior, and that they therefore should be equipped with the ability to self-improve
their future performance. There is a rapidly growing body of work on particular
algorithms and techniques for multi-agent learning. The available work, however, has
almost nothing to say about the intrinsic nature of and the unique requirements for this
kind of learning. This observation forms the starting point of this chapter which is
intended to focus on the characteristics of multi-agent learning, and to take the first
steps toward answering the question What is ‘multi’ in multi-agent learning?

Our approach to this question is interdisciplinary, and leads to a characterization of
multi-agent learning from two different perspectives:

• single-agent learning (‘machine learning perspective’) and
• human-human collaborative learning (‘psychological perspective’).

The ML perspective is challenging and worth exploring because until some years ago
learning in multi-agent and in single-agent environments have been studied
independently of each other (exceptions simply prove the rule). As a consequence, only
very little is known about their relationship. For instance, it is still unclear how exactly a
computational system made of multiple agents learns differently compared to a system
made of a single agent, and to what extent learning mechanisms in multi-agent systems
differ from algorithms as they have been traditionally studied and applied in ML in the
context of single-agent systems. The psychological perspective is challenging and
worthy of exploration because research on multi-agent learning and research on human-
human collaborative learning grew almost independently of each other. Despite the
intuitively obvious correspondence between these two fields of research, it is unclear
whether existing multi-agent learning schemes can be observed in human environments,
and, conversely whether the mechanisms observed in human-human collaborative
learning can be applied in artificial multi-agent systems.

                                                
1 Throughout this text, the phrase ‘multi-agent’ refers to artificial agents as studied in artificial intelligence
(as in e.g. ‘multi-agent environment’ or ‘multi-agent learning’) and does not refer to human agents.
Human agents will be explicitly mentioned when comparing work on multi-agents with psychological
research on collaborative learning.
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The structure of this chapter is as follows. Section 2 provides a compact guide to the
concepts of agents and multi-agent systems as studied in (D)AI. The purpose of this
section is to establish a common basis for all subsequent considerations. This section
may be skipped by the reader who is already familiar with the (D)AI point of view of
these two concepts. Section 3 then characterizes multi-agent learning by focusing on
characteristic differences in comparison with single-agent learning. Section 4 then
characterizes multi-agent learning by contrasting it with human-human collaborative
learning. Finally, section 5 concludes this chapter by briefly summarizing the main
results and by suggesting potential and promising directions of future research on multi-
learning.

2. A brief guide to agents and multi-agent systems

Before focusing on multi-agent learning, it is useful and necessary to say a few words
about the context in which this kind of learning is studied in DAI. This section offers a
brief guide to this context, and tries to give an idea of the AI point of view of agents and
multi-agent systems. The term ‘agent’ has turned out to be central to major
developments in AI and computer science, and today this term is used by many people
working in different areas. It is therefore not surprising that there is considerable
discussion on how to define this term precisely and in a computationally useful way.
Generally, an agent is assumed to be composed of four basic components, usually called
the sensor component, the motor component, the information base, and the reasoning
engine. The sensor and motor components enable an agent to interact with its
environment (e.g. by carrying out an action or by exchanging data with other agents).
The information base contains the information an agent has about its environment (e.g.
about environmental regularities and other agents' activities). The reasoning engine
allows an agent to perform processes like inferring, planning and learning (e.g. by
deducing new information, generating behavioral sequences, and increasing the
efficiency of environmental interaction). Whereas this basic conception is commonly
accepted, there is ongoing controversy on the characteristic properties that let an object
like a program code or a robot be an agent. Following the considerations in (Wooldridge
and Jennings, 1995b), a weak and a strong notion of agency can be distinguished.
According to the weak notion, an agent enjoys the following properties:

• autonomy,
• reactivity, and
• pro-activeness.

According to the more specific and strong notion, additional properties or mental
attitudes like

• belief, knowledge, etc. (describing information states),
• intention, commitment, etc. (describing deliberative states), and
• desire, goal, etc. (describing motivational states)
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are used to characterize an agent. Examples of ‘typical’ agents considered in (D)AI are
shown below. The reader interested in more details on AI research and application on
agency is particularly referred to (Wooldridge & Jennings, 1995a; Wooldridge, Müller
& Tambe, 1996; Müller, Wooldrige & Jennings, 1997).

In artificial intelligence recent years have shown a rapidly growing interest in systems
composed of several interacting agents instead of just a single agent. There are three
major reasons for this interest in multi-agent systems:

• they are applicable in many domains which cannot be handled by centralized
systems;

• they reflect the insight gained in the past decade in disciplines like artificial
intelligence, psychology and sociology that intelligence and interaction are deeply
and inevitably coupled to each other;

• recently, a solid platform of computer and network technology for realizing
complex multi-agent systems is available.

Many different multi-agent systems have been described in the literature. According to
the basic conception and broadly accepted viewpoint, a multi-agent system consists of
several interacting agents which are limited and differ in their motor, sensory and
cognitive abilities as well as in their knowledge about their environment. We briefly
illustrate some typical multi-agent scenarios.

One widespread and often used scenario is the transportation domain (e.g. Fischer et al.,
1993). Here several transportation companies, each having several trucks, transport
goods between cities. Depending on the level of modeling, an individual truck,
coalitions of trucks from the same or different companies, or a whole company may
correspond to and be modeled as an agent. The task that has to be solved by the agents is
to complete customer jobs under certain time and cost constraints. Another example of a
typical scenario is the manufacturing domain (e.g. Peceny, Weiß & Brauer, 1996). Here
several machines have to manufacture products from raw material under certain
predefined constraints like cost and time minimization. An individual machine as well
as a group of machines (e.g. those machines responsible for the same production step)
may be modeled as an agent. A further example is the loading dock domain (e.g. Müller
& Pischel, 1994). Here several forklifts load and unload trucks according to some
specific task requirements. Analogous to the other domains, the individual forklifts as
well as groups of forklifts may correspond to the agents. As a final example the toy-
world scenario known as the predator/prey domain should be mentioned (e.g. Benda,
Jaganathan & Dodhiawala, 1986). Here the environment consists of a simple two-
dimensional grid world, where each position is empty or occupied by a predator or prey.
The predators and prey (which can move in a single-step modus from position to
position) correspond to the agents, and the task to be solved by the predators is to catch
the prey, for instance by occupying their adjacent positions. Common to these four
examples is that the agents may differ in their abilities and their information about the
domain, and that aspects like interaction, communication, cooperation, collaboration,
and negotiation are of particular relevance to the solution of the task. These examples
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also give an impression of the three key aspects in which multi-agent systems studied in
DAI differ from each other (Weiß, 1996):

• the environment occupied by the multi-agent system (e.g. with respect to diversity
and uncertainty),

• the agent-agent and agent-environment interactions (e.g. with respect to frequency
and variability), and

• the agents themselves.

The reader interested in available work on multi-agent systems is referred to the
Proceedings of the First and Second International Conference on Multi-Agent Systems
(1995, 1996, see references). Standard literature on DAI in general is e.g. (Bond &
Gasser, 1988; Gasser & Huhns, 1989; Huhns, 1987; O'Hare & Jennings, 1996).

3. The ML perspective: Multi-agent vs. single-agent learning

As mentioned above, multi-agent learning is established as a relatively young but
rapidly developing  area of research and application in DAI (e.g. Imam, 1996; Sen,
1996; Weiß & Sen, 1996; Weiß, 1997). Whereas this area had been neglected until some
years ago, today it is commonly agreed by the DAI and the ML communities that multi-
agent learning deserves particular attention because of the inherent complexity of multi-
agent systems (or of distributed intelligent systems in general). This section
characterizes and illustrates three classes of mechanisms which make multi-agent
learning different from single-agent learning: multiplication, division and interaction.
This classification provides a ‘positive’ characterization of multi-agent learning (we
later present also a ‘negative’ classification). For each mechanism, a general ‘definition’
is provided and several representative multi-agent learning techniques are briefly
described.

This coarse classification does not reflect the variety of approaches to multi-agent
learning. Each class is an abstraction of a variety of algorithms. Most work on multi-
agent learning combines these mechanisms, and therefore a unique assignment is not
always possible. This also means that the three classes are not disjointed, but are of
different complexity and partially subsume one another: divided learning includes
elements of multi-plied learning, and interactive learning includes elements of divided
learning. Our goal was not to compare all existing work in DAI, but to isolate what is
very specific to multi-agent learning and has not been investigated in single-agent
learning. There are of course a few exceptions, since there is for instance something
‘multi’ in research on parallel inductive learning (e.g. Chan & Stolfo, 1993; Provost &
Aronis, 1995) or on multistrategy learning (e.g. Michalski & Teccuci, 1995).

3.1. Multiplication mechanisms

General. If each agent in a multi-agent system is given a learning algorithm, the whole
system will learn. In the case of multi-plied learning there are several learners, but each
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of them learns independently of the others, that is, their interactions do not impact their
individual learning processes. There may be interactions among the agents, but these
interactions just provide input which may be used in the other agents' learning
processes. The learning processes of agents but not the agents themselves are, so to
speak, isolated from each other. The individual learners may use the same or a different
learning algorithm. In the case of multi-plied learning each individual learner typically
pursues its own learning goal without explicitly taking notice of the other agents'
learning goals and without being guided by the wish or intention to support the others in
achieving their goals. (The learning goals may mutually supplement each other, but this
is more an ‘emerging side effect’ than the essence of multi-plied learning.)  In the case
of multi-plied learning an agent learns ‘as if it were alone’, and in this sense has to act as
a ‘generalist’ who is capable of carrying out all activities that as a whole constitute a
learning process.

At the group level, the learning effects due to multiplication may be related to variables
such as the number of agents or their heterogeneity. For instance, if the system includes
several identical robots, it is less dramatic if one of them breaks down (technical
robustness). If the systems includes agents with different background knowledge, it may
work in a wider range of situations (applicability). The effects of multiplication are
salient in sub-symbolic systems or systems being active below the knowledge level
which include a large number of elementary learning units (which, however, can hardly
be called agents). A good example of such systems are artificial neural networks
composed of large numbers of neurons.

Examples of ‘multi-plied learning’. Ohko, Hiraki and Anzai (1996) investigated the use
of case-based learning as a method for reducing communication costs in multiagent
systems. As an application domain a simulated environment occupied by several mobile
robots is used. The robots have to transport objects between predefined locations, where
they differ from each other in their transportation abilities. Each robot has its own case
base, where a single case consists of the description of a transportation task and a
solution together with its quality. Several agents may learn (i.e. retrieve cases and detect
similarities among cases) concurrently, without influencing each other in their learning
processes. Although the robots interact by communicating with each other in order to
announce transportation jobs and to respond to job announcements, the learning
processes of different agents do not interfere with each other.
Haynes, Lau and Sen (1996) used the predator/prey domain in order to study conflict
resolution on the basis of case-based learning. Here two types of agents, predators and
prey, are distinguished. According to this approach each predator can be thought of as
handling its own case base, where a single case consists of the description of a particular
predator/prey configuration and a recommended action to be taken in this configuration.
It is clear that predators interact by occupying the same environment and by sensing
each others' position. Despite this, however, a predator conducts its learning steps
independently of other predators and their learning steps (even if the different learning
processes may result in an increased overall coherence).
Vidal and Durfee (1995) developed an algorithm that allows an agent to predict other
agents' actions on the basis of recursive models, that is, models of situations that are
built on models of other situations in a recursive and nested way. The models of
situations are developed on the basis of past experience and in such a way that costs for
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development are limited. Here learning is multi-plied in the sense that several agents
may concurrently learn about each other according to the same algorithm without
requiring interaction except mutual observation. There is no joint learning goal. The
learning processes of multiple learners do not influence each other, and they occur
independently of each other. Observation just serves as a ‘mechanism’  that provides the
information upon which a learning process is based.
Terabe et al. (1997) dealt with the question of how organizational knowledge can
influence the efficiency of task allocation in multiagent settings, i.e. to assign tasks to
agents in such a way that the time for completing the tasks is reduced. Organizational
knowledge is information about other agents' ability to solve tasks of different types. In
the scenario described by Terabe and his colleagues several agents can learn
independently of each other how specific tasks are best distributed across the overall
system. There is no explicit information exchange among the agents, and the only way
in which they interact is by observing each others' abilities. The observations made by
an agent are used to improve its estimate of the abilities of the observed agent, but the
improvement itself is done by the observer. Each agent responsible for distributing a
task conducts the same learning scheme, and none of the responsible agents is
influenced in its learning by the other agents.
Carmel and Markovitch (1996) investigated the learning of interaction strategies from a
formal, game-theoretic perspective. Interaction is considered as a repeated game, and
another agent's interaction strategy is represented as a finite state-action automata.
Learning aims at modeling others' ‘interaction automata’ based on past observations
such that predictions of future interactions become possible. As in the research
described above, the learning of the individual agents is not influenced by the other
agents. The agents interact by observing each others' behavior, and the observations then
serve as an input for separate learning processes. There is also no shared learning goal;
instead, each agent pursues its own goal, namely, to maximize its own ‘profit’. Related,
game-theoretic work on multiagent learning was presented by Sandholm and Crites
(1995) and Mor, Goldman and Rosenschein (1996).
Bazzan (1997) employed the evolutionary principles of mutation and selection as
mechanisms for improving coordination strategies in multiagent environments. The
problem considered was a simulated traffic flow scenario, where agents are located at
the intersections of streets. A strategy corresponds to a signal plan, and evolution occurs
by random mutation and fitness-oriented selection of the strategies. There are several
other papers on learning in multi-agent systems that follow the principle of biological
evolution; for instance, see (Bull & Forgarty, 1996; Grefenstette & Daley, 1996; Haynes
& Sen, 1996). These are essentially examples of the multi-plied learning approach
because the agents do not influence each other in their learning processes. It has to be
stressed that a classification of evolution-based learning is difficult in so far as
‘evolution’, reduced to the application of operators like mutation and selection, can be
also viewed as a centralized process. From this point of view the agents just act,
whereas ‘learning by evolution’ is something like a meta-activity that takes place
without being influenced by the agents themselves.
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3.2. Division mechanisms

General. In the case of ‘divided learning’ a single-agent learning algorithm or a single
learning task is divided among several agents. The division may be according to
functional aspects of the algorithm and/or according to characteristics of  the data to be
processed in order to achieve the desired learning effects. As an example of a functional
division one could consider the task of learning to optimize a manufacturing process:
here different agents may concentrate on different manufacturing steps. As an example
of a data-driven division one could think of the task of learning to interpret
geographically distributed sensor data: here different agents may be responsible for
different regions. The agents involved in divided learning have a shared overall learning
goal. The division of the learning algorithm or task is typically done by the system
designer, and is not a part of the learning process itself. Interaction is required for
putting together the results achieved by the different agents, but as in the case of multi-
plied learning this interaction does only concern the input and output of the agents'
learning activities. Moreover, the interaction does not emerge in the course of learning
but is determined a priori and in detail by the designer. This is to say that there are
interactions among the participants, but without a remarkable degree of freedom (i.e. it
is known a priori what information has to be exchanged, when this exchange has to take
place, and how the exchanged information has to be used). An individual agent involved
in ‘divided learning’ acts as ‘specialist’ who is just responsible for a specific subset of
the activities that as a whole form the overall learning process.

Different benefits can be expected from a division of labour. The fact that each agent
only computes a subset of the learning algorithm makes it simpler to design and reduces
the computational load of each agent. The ‘agent’ metaphor insists on the autonomy of
functions with respect to each other. A benefit expected from this increased modularity
is that the different functions may be combined in many different ways. A further
potential benefit is that a speed-up in learning may be achieved (provided that the time
gained by parallelism is not weighted out by the time required for coordination). The
main difference between division and multiplication is redundancy: in division, each
agent performs a different subtask while in multiplication, each agent performs the same
task. In other words, the rate of redundancy in agent processing would be 0% in ‘pure’
division mechanisms and 100%  in ‘pure’ multiplication, the actual design of existing
systems being of course somewhere in between these two extremes.

Examples of ‘divided learning’. Sen, Sekaran and Hale (1994) concentrated on the
problem of achieving coordination without sharing information. As an illustration
application, the block pushing problem (here two agents cooperate in moving a block to
a specific predefined position) was chosen. The individual agents learn to jointly push
the block towards its goal position. The learning task, hence, was divided among two
agents. Sen and his colleagues showed that the joint learning goal can be achieved even
if  the agents do not model each other or exchange information about the problem
domain. Instead, each agent implicitly takes into consideration the other agent's
activities by sensing the actual block position. In as far as the individual agents do not
exchange information and learn according to the same algorithm (known as Q-learning),
this work is also related to multiplied learning.
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Plaza, Arcos and Martin (1997) applied multiagent case-based learning in the domain of
protein purification. The task to be solved here is to recommend appropriate
chromatography techniques to purify proteins from tissues and cultures. Each agent is
assumed to have its own case base, where a case consists of a protein-technique pair, as
well as its own methods for case indexing, retrieval and adaptation. Two different
modes of ‘case-based cooperation’ are proposed: first, an agent's case base can be made
accessible to other agents; and second, an agent can make its methods for handling cases
available to other agents. These modes are applied when a single agent is not able to
solve a given protein purification task, and both result in the division of a single learning
task among several agents.
Parker (1993) concentrated on the question of how cooperative behavior can be learnt in
multi-robot environments. Parker was particularly interested in the question of how
coherent cooperation can be achieved without excessive communication. The main idea
was to realize cooperative behavior by learning about ones own and others' abilities. The
scenario consisted of heterogeneous robots that have to complete some predefined tasks
as fast as possible, where the individual robots differ in the abilities to carry out this
tasks. Learning is divided in as far as the robots collectively learn which robot should
carry out which task in order to improve cooperation. In as far as this approach requires
that the robots learn about each other (and, hence, to develop a model of the others) in
order to achieve a shared goal, it is closely related to interactive learning. Other
interesting research on multi-robot learning which falls into the category of divided
learning is described in (Mataric, 1996).
Weiß (1995) dealt with the question of how several agents can form appropriate groups,
where a group is considered as a set of agents performing compatible actions that are
useful in achieving a common goal. As an application domain the multiagent blocks
world environment was used. The task to be solved in this domain was to transform
initial configurations of blocks into goal configurations, where the individual agents are
specialized in different activities. The proposed algorithm provides mechanisms for the
formation of new and the dissolution of old groups. Formation and dissolution is guided
by the estimates of the usefulness of the individual agents and the groups, where the
estimates are collectively learnt by the agents during the problem solving process.
Learning is divided in as far as different agents are responsible for different blocks and
their movements. This work is related to interactive learning in as far the agents and
groups dynamically interact (by building new groups or dissolving old ones) during the
learning process whenever they detect a decrease in their performance.

3.3. Interaction mechanisms

General. The multiplication and division mechanisms do not explain all the benefits of
multi-agent learning. Other learning mechanisms are based on the fact that agents
interact during learning. Some interaction also occurs in the two previous mechanisms,
but it mainly concerns the input or output of the individual agents' learning processes.
Moreover, in the case of multi-plied and divided learning, interaction typically occurs at
the relatively simple and pre-specified level of  ‘pure’ data exchange. In the case of
interactive learning, the interaction is a more dynamic activity that concerns the
intermediate steps of the learning process. Here interaction does not just serve the
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purpose of data exchange, but typically is in the spirit of a ‘cooperative, negotiated
search for a solution of the learning task’.  Interaction, hence, is an essential part and
ingredient of the learning process. An agent involved in interactive learning does not so
much act as a generalist or a specialist, but as a ‘regulator’ who influences the learning
path and as an ‘integrator’ who synthesises the conflicting perspectives of the different
agents involved in the learning process. For an illustration of the differences between
the three classes of learning, consider the concept learning scenario. In an only-
multiplied system, two inductive agents could interact to compare the concepts they
have built. In an only-divided system, a ‘negative instance manager’ could refute the
concept proposed by the ‘positive instances manager’. The resulting concept may be
better but the reasoning of one agent is not directly affected by the others. In an
interactive approach, two inducers could negotiate the generalization hierarchy that they
use.  The term ‘interaction’ covers a wide category of mechanisms with different
potential cognitive effects such as explanation, negotiation, mutual regulation, and so
forth. The complexity of these interactions makes up another difference between
interactive learning on the one hand and multi-plied/divided learning on the other.

The difference between the interactions in the multiplication/division approaches and
the interaction approaches is mainly a matter of granularity: agents using the
‘multiplication/ division’ mechanisms interact about input and/or output of the agents'
learning processes, while the mechanisms classified under the ‘interaction’ label
concern intermediate learning steps. Obviously, the difference between an input and an
intermediate step is a matter of granularity, since intermediate data can be viewed as the
input/output of sub-processes. The criterion is hence not fully operational. However, the
interaction mechanisms (e.g. explanation) is also concerned with how the intermediate
data are produced. We briefly illustrate this point in the context of case-based reasoning:

• Multiplication: case-based reasoning agents interact about the solution they have
derived by analogy.

• Division: the ‘case retrieval’ agent asks the ‘case adapter’ agent for specifying the
target case more precisely.

• Interaction: a ‘case retrieval’ agent asks a ‘case adapter’ agent for justification for
the selection of a particular case or for naming a criterion that should be used for
retrieval.

Examples of ‘interactive learning’. Sugawara and Lesser (1993) investigated how
coordination plans can be learnt in distributed environments. The diagnosis of network
traffic was chosen as an application domain. By observing the network, each agent
responsible for diagnosing some part of the network learns by observation a model of
the network segment in which it is located and of the potential failures that may occur.
Based on this learning, the agents collectively develop rules and procedures that allow
improved coordinated behavior (e.g. by avoiding redundant activities) on the basis of
diagnosis plans. The learning task is not divided a priori; instead, the agents dynamically
contribute to the joint learning task depending on their actual knowledge.
Bui, Kieronska and Venkatesh (1996) studied mutual modeling of preferences as a
method for reducing the need for time- and cost-consuming communication in
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negotiation-intensive application domains. The idea was to learn from observation to
predict others' preferences and, with that, to be able to predict others' answers. The work
is centered around the concept of joint intentions and around the question of how such
intentions could be incrementally refined. This incremental refinement requires conflict
resolution during a negotiation process. As an application domain they chose a
distributed meeting scheduling scenario in which the agents have different preferences
with respect to the meeting date. Moreover, it is assumed that none of the agents posses
complete information about the others, and it is taken into consideration that the privacy
of personal schedules should be preserved.
In the context of automated system design, Nagendra Prasad, Lesser and Lander (1995)
investigated the problem of how agents embedded in a multiagent environment can
learn organizational roles. The problem to be solved by the agents is to assemble a
(simplified) steam condenser. A role is considered as a set of operators an agent can
apply to a composite solution. Each agent is assumed to be able to work on several
composite solutions concurrently, and to play different roles concurrently. Three types
of organizational roles were distinguished, namely, for initiating a solution, for
extending a solution, and for criticizing a solution. It was shown that learning of
organizational roles enables a more efficient, asynchronous and distributed search
through the space of possible solution paths. Although role learning itself is done by an
agent independent of the other agents, all agents are involved in an overall conflict
detection and resolution process. (This work is also of interest from the point of view of
‘divided learning’ in so far as the organizational roles are predefined and the agents are
responsible for different parts of the steam condenser (e.g. the ‘pump agent’ and the
‘shaft agent’).
In closely related work, Nagendra Prasad, Lesser and Lander (1996) investigated
multiagent case-based learning in the context of automated system design. As in their
work mentioned above, the problem of building a steam condenser was chosen as an
illustrative application. Here the focus was not on organizational roles, but on negotiated
case retrieval. Each individual agent is assumed to be responsible for integrating a
particular component of the overall system, and to have its particular view of the design
problem. Moreover, each agent is associated with its own local case base and with a set
of constraints describing the component's relationships to other components, where a
case consists of the partial description of a component configuration and the constraints
associated with it. The agents negotiate and iteratively put together their local ‘subcases’
such that constraint violations are reduced and a consistent overall case that solves the
design problem is achieved. With that, both the cases as well as the processes of case
indexing, retrieval and adaptation are distributed over several agents, and learning
requires intensive interaction among the individuals.
Tan (1993) dealt with the question of how cooperation and learning in multiagent
systems are related to each other, where exchange of basic information about the
environment and exchange of action selection policies are distinguished as different
modes of cooperation. Experiments were conducted in the predator/prey domain. The
results indicated that cooperation can considerably improve the learning result, even if it
may slow down learning especially at the beginning. This work is closely related to
divided learning in as far as Tan also considered situations in which learning and
sensing is done by different agents, and it is related to multi-plied learning as far as Tan
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considered situations in which different predators learn completely independent of each
other.

4. The psychological perspective: Multi-agent learning
vs. human-human collaborative learning

This section characterizes available approaches to multi-agent learning from the
perspective of human-human collaborative learning. As noted in (Weiß, 1996), in DAI
and ML the term ‘multi-agent learning’ is used in two different meanings. First, in its
stronger meaning, this term refers only to situations in which the interaction among
several agents aims at and is required for achieving a common learning goal. Second, in
its weaker meaning, this term additionally refers to situations in which interaction is
required for achieving different and agent-specific learning goals. For a brief illustration
of these meanings, consider the multi-agent scenarios sketched in the section 2. The
transportation domain is a good example for multi-agent learning in its weaker meaning;
here the interacting agents (trucks or companies) pursue different learning goals,
namely, to maximize their own profit at the cost of the other agents' profit. The
manufacturing domain is a good example for multi-agent learning in its stronger
meaning, because here all agents or machines try to learn a schedule that allows the
manufacturing of products in minimal time and with minimal costs. Obviously, it is
multi-agent learning in its stronger meaning that is more related to human-human
collaborative learning, and which is therefore chosen as a basis for all considerations in
this section.

The three types of learning mechanisms introduced in the previous section allows us to
contrast multi-agent and single-agent learning, but are not appropriate for comparing
multi-agent to human-human collaborative learning. In human groups, multi-plied,
divided and interactive learning mechanisms occur simultaneously. ‘Multiplication’
mechanisms occur. For instance, we observed several instances (Dillenbourg et al.,
1997) in a synchronous written communication environment of peers producing the
same sentence simultaneously, i.e. they where conducting in parallel the same reasoning
on the same data. The ‘division’ mechanisms do occur in collaborative learning. We
discriminate (see chapter 1, this volume) cooperative settings, in which the division of
labour is regulated by more or less explicit rules, and collaborative learning, with no
explicit division of labour. However, even in collaborative tasks, a spontaneous division
of labour can be observed (Miyake, 1986), although the distribution of work is more
flexible (it changes over time).

Some of the mechanisms which make collaborative learning effective (Dillenbourg &
Schneider, 1995) relate to the first and second types of the learning mechanisms.
However, the ‘deep secret’ of collaborative learning seem to lie in the cognitive
processes through which humans progressively build a shared understanding. This
shared understanding relates to the third type of mechanisms. It does not occur at once,
but progressively emerges in the course of dialogue through processes like conflict
resolution, mutual regulation, explanation, justification, grounding, and so forth.
Collaborative dialogues imply a sequence of episodes, some of them being referred to as
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‘explanations’, ‘justification’, or whatever, and they are all finally instrumental in the
construction of a shared solution. The cognitive processes implied by these interactions
are the focus of current studies on human-human collaborative learning - and they have
been largely ignored so far in the available studies on multi-agent learning. In the
following, we will therefore concentrate on three of these processes - conflict resolution,
mutual regulation, and explanation - in more detail in order to show what current
approaches to multi-agent learning do not realize. Additionally, a closer look is taken on
the importance of misunderstanding, which usually is considered by (D)AI researchers
as something that should be avoided in (multi-)agent contexts, but which plays an
important role for human-human collaborative learning. With that, and in contrast to the
previous section, this one provides a ‘negative’ characterization of multi-agent learning
which allows us to make suggestions for future research on this kind of learning.

We are speaking of ‘(different types of) mechanisms’ because this chapter concentrates
on computational agents. It is clear, however, that human-human collaborative learning
constitutes a whole process in which ‘multiplication’, ‘division’ and ‘interaction’
correspond to different aspects of the same phenomena. Therefore, in focusing on the
processes of conflict resolution, regulation, and explanation, we illustrate these three
regards.

4.1. Conflict Resolution

The notion of conflict, which is popular in DAI , is the basis of the socio-cognitive
theory of human-human collaboration (Doise and Mugny, 1984). According to this
theory, the benefits of collaborative learning are explained by the fact that two
individuals will disagree at some point, that they will feel a social pressure to solve that
conflict, and that the resolution of this conflict may lead one or both of them to change
their viewpoint. This can be understood from the ‘multiplication’ perspective, because a
conflict between two or several agents is originated by the multiplicity of knowledge. It
appears, however, that learning is not initiated and generated by the conflict itself but by
its resolution, that is, by the justifications, explanations, rephrasements, and so forth,
that lead to a jointly accepted proposition. Sometimes, a slight misunderstanding may be
enough to generate these explanations, verbalizations, and so forth. Hence, the real
effectiveness of conflict has to be modelled through interactive mechanisms.

4.2. Mutual regulation

Collaboration sometimes leads to improved self-regulatory skills (Blaye, 1988). One
interpretation of these results is that strategic decisions are precisely those for which
there is a high probability of disagreement between partners. Metaknowledge is
verbalized during conflict resolution and, hence, progressively internalized by the
partners. Another interpretation attributes this effect to a reduced cognitive load: when
one agent looks after the detailed task-level aspects, the other can devote his cognitive
resources to the meta-cognitive level. This interpretation could be modelled through a
‘division’ mechanism. However, mutual regulation additionally requires that each
partner maintains ‘some’ representation of what the other knows and understands about
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the task. This is not necessarily a detailed representation of all the knowledge and
viewpoints of a partner, but a task-specific differential representation (‘With respect to
that point my partner does have a different opinion to me’). The verbal interactions
through which one maintains a representation of one’s partners knowledge have been
partly studied in linguistics, but the cognitive effects of this mutual modelling process,
constitutes an interesting item on the agenda of psychology research. Interestingly, this
ability was proposed by Shoham (1990) as a criterion to define what an agent is and
whether an agent is more than a simple function in a system

4.3. Explanation

The third phenomena considered here is learning by building an explanation to
somebody else. Webb (1989) observed that subjects who provide elaborated
explanations learn more during collaborative learning than those who provide
straightforward explanations. Learning by explaining does even occur when the learner
is alone: students who explain aloud worked-out examples or textbooks, spontaneously
or on a experimenter's request, acquire new knowledge  (Chi et al., 1989). The effect of
explanation in collaborative learning could be reduced to a multiple self-explanation
effect (see Ploetzner et al. - this volume). For instance, in a multi-agent system each
agent could be given a ‘learning by explaining’ algorithm inspired by VanLehn's
computational model of the self-explanation effect (VanLehn et al., 1992) or by some
explanation-based learning algorithm (EBL) (Mitchell et al., 1986). The benefit of
‘multiplicity’ could result from the heterogeneity of outcomes: The generalization stage
- the most delicate step in EBL - could be ‘naturally’ controlled as the least general
abstraction of the proofs built by different agents.

An explainer has to simultaneously build the explanation and check for its consistency.
In self-explanation, this self-regulation process is costly, while in collaboration, the cost
of regulation can be shared. The cognitive load is lower when one checks the
consistency of an explanation given by somebody else, than when one has to check one's
own explanation. Hence, this interpretation mechanism can be viewed from the
perspective of the second type of mechanisms, the division of labour. This idea was
implemented in People Power (Dillenbourg & Self, 1992). An agent explains a decision
by showing the trace of the rules fired to take that decision. Some of these rules were
too general and learning consisted in specializing them progressively. When the second
agent received an explanation, he tried to refute the argument made by the first agent (in
order to show that it is too general). Actually both agents used exactly the same rules,
hence learning was not related to multiplicity. It simply was too expensive for one agent
to build a proof, to try to refute any step of its proof, to refute any step of this self-
refutation, etc. In other words, the functions ‘produce an explanation’ and ‘verify an
explanation’ were distributed over two agents, as in the ‘division’ perspective.

However, explanation is most relevant from the perspective of the interaction
mechanisms. An explanation is not simply something which is generated and delivered
by an agent to another (as it could be viewed in the case of multiple self-explanation).
Explanation is, of course, interactive. Current studies on explanation view explanation
as a mutual process: explanation results from a common effort to understand mutually
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(Baker, 1992). The precise role of interactivity is not yet very clear. It has not been
shown that interactive explanations generate higher cognitive effects. The situations in
which the explainee may interact with the explainer do not lead to higher learning
outcomes than those where the explainee is neutral (see Ploetzner et al. - this volume).

4.4. The importance of misunderstanding

The three mentioned mechanisms are modeled in some way in DAI. The main
difference is that the computational models use formal languages while humans use
natural language (and non-verbal communication). It is of course common sense to use a
formal language between artificial agents, but the use of natural language creates a
major difference which might be investigated in DAI without having to ‘buy’
completely the natural language idea: it creates room for misunderstanding.

Misunderstanding leads to rephrasement, explanation, and so forth, and hence to
processes which push collaborative learners to deepen their own understanding of the
words they use. As Schwartz (1995) mentioned, it is not the shared understanding per se
which is important, but the efforts towards shared understanding. We see two basic
conditions for the emergence of misunderstanding:

•  Misunderstanding relies on semantic ambiguity. It is a natural concern of multi-agent
system designers to specify communication protocols in which the same symbol
conveys the same ‘meaning’ for each agent, simply because ‘misunderstandings’ are
detrimental to system efficiency. With that, it turns out that there is a conflict
between efficiency and learning in multi-agent systems: misunderstanding and
semantic ambiguity increase the computational costs, but at the same time the
potential of collaborative learning.

•  Having room for misunderstanding also means having room for discrepancies in the
knowledge and experience of interacting individuals. Such discrepancies may arise,
for instance, because the individuals act in different (perhaps geographically
distributed) environments, because they are equipped with different sensing abilities
(although they might occupy the same environment), and because they use different
reasoning and inference mechanisms. From this point of view it turns out that
heterogeneity should be not only considered as a problem, but also as an opportunity
for designing sophisticated multi-agent systems.

This room for misunderstanding implies that agents are (partly) able to detect and repair
misunderstanding. Obviously, it is not sufficient to create space for misunderstanding,
but the agents must be also capable of handling it. Any misunderstanding is a failure in
itself, and it constitutes a learning opportunity only if it is noticed and corrected. The
mechanisms for monitoring and repairing misunderstandings in human contexts are
described extensively in this volume (Chapter 3, Baker et al.). What matters here from
the more technical multi-agent perspective is that the monitoring and repairing of
misunderstandings require the agent to maintain a representation of what it believes and
what it’s partners believes. (see section 4.2)
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These considerations seem to indicate that multi-agent learning necessarily has to be
limited with regard to collaboration, as long as the phenomenon of misunderstanding is
suppressed and ignored in multi-agent systems. A solution to this limitation would be to
consider ‘mis-communication’ not always as an error that has to be avoided during
design, but sometimes as an opportunity that agents may exploit for learning. The same
distinction can be made with linguistic studies, where the concept of ‘least collaborative
effort’ is used to describe how interlocutors achieve mutual understanding, while we
prefer to refer to the ‘optimal collaborative effort’ to emphasize that the additional
cognitive processes involved in repairing mutual understanding may constitute a source
of  learning (Traum & Dillenbourg, 1996).

Two additional remarks. Firstly, the above considerations may sound inappropriate since
the notion of (mis)understanding is purely metaphorical when talking about artificial
agents. However, one can understand the notion of ‘meaning’ as the relationship
between a symbol and a reference set. Typically, for an inductive learning agent A1, a
symbol X will be related to a set of examples (S1). Another agent A2 may connect X
with another set of examples (S2), overlapping only partly with S1. Then, negotiation
can actually occur between A1 and A2 as a structure of proofs and refutations regarding
the differences between S1 and S2.

Secondly, in addressing the above question, we restricted ourselves to verbal interaction
and dialogues, because this is most interesting from the point of view of artificial agents.
In particular, we did not deal with non-verbal interaction (based on e.g. facial
expressions and body language), even though it is an important factor in human-human
conversation. However, as a first step in that direction, we are currently working on
implicit negotiation in virtual spaces where artificial agents negotiate division of labour
by movements: Agent-A watches which rooms are being investigated by Agent-B and
acknowledges Agent-B’s decision by selecting rooms which satisfy the inferred strategy
(Dillenbourg et al, 1997).  Finally, it should be noted that we did not deal with certain
aspects of dialogues that are relevant to human-human collaborative learning, but are
difficult to model in artificial contexts. Examples of such aspects are the relationship
between verbalization and consciousness (humans sometimes only become aware of
something when they articulate it), dialogic strategies (one purposefully says something
one does not believe to test ones partner) and the internalization of concepts conveyed in
dialogues (these points are addressed in chapter 7, Mephu Nguifo et al., this volume).

5. Conclusions

Summary. This chapter aimed at taking the first steps toward answering the question
What is ‘multi’ in multi-agent learning? We attacked this question from both a ML and
a psychological perspective. The ML perspective led to a ‘positive’ characterization of
multi-agent learning. Three types of learning mechanisms - multiplication, division, and
interaction - were distinguished that can occur in multi-agent but not in single-agent
systems. This shows that multi-agent learning can take place at a qualitatively different
level compared to single-agent learning as it has been traditionally studied in ML.
Hence, multi-agent learning is more than just a simple magnification of single-agent
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learning. The psychological perspective led to a ‘negative’ characterization of multi-
agent learning. Several processes like conflict resolution, mutual regulation and
explanation were identified that play a more significant role in human-human
collaborative learning than in multi-agent learning since they contribute to the
elaboration of a shared understanding. The cognitive effort necessary to build this
shared understanding , i.e. to continuously detect and repair misunderstanding, has not
received enough attention in multi-agent learning where noise is a priori not treated as a
desirable phenomenon. Hence, despite the fact that multi-agent learning and human-
human collaborative learning constitute corresponding forms of learning in technical
and in human systems, it is obvious that the available multi-agent learning approaches
are of lower complexity.

Some Implications. There are many approaches to multi-agent learning that are best
characterized as multiplication or division mechanisms, but less that are best
characterized as interaction mechanisms. This indicates important potential directions
for future research on multi-agent learning. What is needed are algorithms according to
which several agents can interactively learn and, at the same time, influence - trigger, re-
direct, accelerate, etc. - each other in their learning. From what is known about human-
human collaborative learning, the development of these kinds of multi-agent algorithms
may be facilitated by putting more emphasis on the implementation of negotiation
processes among agents, triggered by the possibility of misunderstanding and oriented
towards the emergence of a shared understanding.
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