
Tank Wars! Evolving Steering and Aiming Behaviour
for Computer Game Agents

Yvan Bourquin

Essay in Adaptive Systems

Candidate No 81214 for MSc in Evolutionary and Adaptive Systems

Department of Informatics

University of Sussex, Brighton, United Kingdom

1 Abstract
This document describes the methods used to obtain steering and aiming behaviour in

autonomous computer game agents. The agents are tank-shaped vehicles equipped with

mobile gun turrets. They learn to avoid collisions and fire each other in a two-dimensional

maze environment. The tanks' behaviour is not programmed explicitly; it is controlled by

continuous time recurrent neural networks (CTRNN) [Beer 1996, Slocum et. al., 2000] whose

parameters are self-programmed using evolutionary methods.

2 Introduction
Traditional obstacle avoidance and also discrimination tasks, minimal cognition, short-term

memory and selective attention [Beer 1996, Slocum et. al., 2000] are currently achievable by

evolutionary robotics. However, to date only simple behaviour can be obtained and there is a

long way to go until these techniques can be applied to physical robots in a useful manner.

However simple behaviour is precisely what is required in many computer games. For

example, playing the famous Tetris or Archanoid games needs nothing more than simple

discrimination and sensory-motor coordination. Therefore evolutionary methods using

CTRNNs can be used to create artificial opponents or allies for human players in this sort of

game and the entertainment industry should be interested in this kind of technology.

Evolutionary algorithms have already been used with success in some computer games,

however, so far these methods have not been used to create sensory-motor computer games. I

therefore think that this is an interesting subject to explore.

3 Scenario
Many different game scenarios were possible candidates to look into minimal behaviour. A

simple multiplayer search and destroy tank fight scenario was chosen because it seemed to

require the kind of behaviour that is known to be achievable with CTRNNs according to the

literature. The scenario consists of two, or more, tanks moving about and firing at each other

in a simple two-dimensional maze environment. Each tank is equipped with a rotating turret

holding a gun. There are no teams; every other tank encountered is considered as an enemy.

The tank bodies are equipped with six proximity sensors. Those sensors inform the tank of the

distance to solid objects so that collision with walls or other tanks can be avoided. The tank

turrets are equipped with six vision sensors that allow the tank to track its enemies.

 2

4 Methods

4.1 Simulator
The simulator essentially detects collision by a method based on line intersections. The

simulation speed can be increased or decreased during run-time. The simulator can also be

switched to an offline mode where it works as fast as possible for the available CPU power.

4.1.1 Proximity Sensors

The proximity sensors measure the distance between the tank and an obstacle located within a

restricted range. Every solid object is considered as an obstacle, no distinction is made

between a wall and a tank. Two sensors are mounted at the rear and four at the front because

when the tank is in motion, a frontal collision is more probable (see Figure 1). The range of

each sensor is of 30 units
1
. The sensor output is inversely proportional to the distance to an

obstacle and scaled to fit in the range [0, 1]. Therefore an object beyond 30 units generates a

sensor activity of 0 and object in contact with the sensor gives 1.

Figure 1: Proximity sensors

Sensors number 2 and 3 are aimed to avoid frontal collision with other tanks while number 1

and 4, placed at 45°, are designed to enable wall following behaviour. The rear sensors aim to

avoid rear collision when the tank manoeuvres.

4.1.2 Vision Sensors

The vision sensors are fixed on the turret and move with it. In order to facilitate aiming, the

turret rotation is decoupled from the body motion. Therefore, when the tank turns, the turret

keeps its global orientation
2
. The vision sensors are placed at close angles from each other in

order to enable accurate aiming (see Figure 2). When a vision sensor ray intersects a tank

body, it returns a value in the interval [0, 1] inversely proportional to the distance to the tank.

In every other case, whether the ray meets a wall or not, the sensor returns 0.

1 Since this is not a simulation of the real world, the units are arbitrary. However for concreteness distances can

be assumed to be in meters and times in seconds.
2 Note that this is similar to some real tanks where the turret is controlled by gyroscopes; it remains stable and

this allows shooting while moving.

x

y

3

0 1

4

2

5

45°

45° 26.5°

26.5°

front rear

 3

Figure 2: Vision sensors

The vision sensor operates like real vision only in the sense that it is insensitive to objects

hidden by other objects. For example it cannot see a tank hidden by a wall.

4.1.3 Tank

The tank motion is controlled by two simulated motors. The neural network outputs are not

connected directly to the motors. Instead they are considered as indications of the desired

speed. At each time step the effective motor speed is changed so that its difference from the

desired speed is halved; a kind of acceleration effect results. In addition, some Gaussian noise

is injected into the motors in order to slightly randomize motion and to make the simulation

indeterminate.

4.2 Neural Network

4.2.1 CTRNNs

The CTRNN architecture was chosen because it is known to work well for the type of

behaviour that is desired for the tanks. For example [Beer 1996] uses CTRNNs for orientation

and pointing: similar tasks to those we require of the tank turret. Because the CTRNNs have

their own internal dynamics, they are able to display some memory effect. For example, this

memory effect enables the emergence of object persistence in Beer's orientation experiments

[Beer 1996]. Object persistence is typically what is required for the turret's aiming behaviour.

If the turret is aiming at a target that disappears behind a wall, it is very much desired that the

turret continues its motion for a while with the same speed and direction, in order to

eventually be able to catch sight of the target as it reappears at the other end of the wall.

CTRNNs can also provide efficient obstacle avoidance behaviour. Of course, a purely

feed-forward network can implement Braitenberg-vehicle behaviour and avoid obstacles;

however it can only determine its behaviour according to the current stimuli. In our setup

some of the obstacles are in motion and therefore a network with internal dynamics like a

CTRNN is more likely to be able to take that motion into account, at least to a small extent.

4.2.2 Task decomposition

The initial tests showed that evolving a complex task is not straightforward and takes a lot of

time. Evolving the steering and aiming behaviour within a single network might require an

excessive amount of time or just fail. A CTRNN for controlling both steering and aiming

x

y
0

3

4

1

5

2

7°

7°

7°

7°

4.8°

 4

requires twelve sensory inputs, four motor neurons and a number of intermediate neurons.

Therefore the parameter search space becomes large. For that reason it was decided to start

with two independent neural networks for the two different tasks; one CTRNN for steering

and another one for aiming. With this simplification the problem was decomposed into two

behaviours which have previously been solved using CTRNNs. Since both the tank body and

turret have the same number of sensors and motors, it was possible to use the same

architecture for both. On the other hand, the evolutionary process was carried out using two

distinct populations and fitness functions.

4.2.3 Synaptic Interconnection

In the literature, the CTRNN neurons' interconnection design varies according to the nature of

the problem and the authors. For example [Blynel & Floreano 2002] use neurons which are

fully recurrent, self-connected and also connected to every sensor. In the octopod locomotion

system of [Jakobi 1998], each leg is controlled by a fully interconnected CTRNN from which

two neurons are connected to the leg motors
3
.

The "fully interconnected" approach is tempting because it leaves to evolution the task

of finding the optimal solution. However it is possible to make some assumptions of what a

functional evolved network would look like. These assumptions allow leaving out some

connections at the very beginning and therefore reducing the number of parameters to evolve.

With less parameters, convergence has more chance to happen and can also happen faster.

Figure 3: The tank's two-layer CTRNN architecture

The chosen architecture (Figure 3) uses self- and recurrent connections, but only in the hidden

layer. Recurrent and self-connections between motor neurons, or backwards, from the motor

neurons to the hidden neurons are excluded.

3 Note that the CTRNNs are also connected with each other. Each one is connected to the CTRNN of the opposite

leg, the legs in front and at the rear in a circular manner.

Σ

Σ

Y

[M]

V

[H·H] U

[H·N]

W

[M·H]

Left

motor

Right

motor

I

[N]

Sensor 0

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Hidden

neurons

Motor

neurons

 5

4.2.4 Neuron Model

The neuron model is based on the CTRNN equations described in [Beer, lecture notes]. The

state of the neural network shown in Figure 3 is computed in two different phases. The first

phase computes the new motor neuron states from the previous motor neuron and hidden

neuron states and network parameters: y = f(y, γ, w, θ, τ), and it is ruled by the equation

)))(()(()()1(
1

jj

H

j

iji

i

ii nwny
t

nyny θγσ
τ

−+−∆+=+ ∑
=

 (1)

 where i is an index (i = 1, 2, …, M) and M is the number of motor neurons, H is the

number of hidden neurons, the yi are the current states of the motor neurons, ∆t is the

integration step size, τi is a motor neuron time constant, wij is the weight of the connection

from the hidden neuron j to the motor neuron i, σ(x) = 1 / (1 + e
-x
) is the standard sigmoid

function, and θj is a bias term.

The second phase computes the new hidden neuron states from the previous hidden

neuron states, from the weighted sensory inputs and from network parameters: γ = f(γ, I, u, v,

θ', τ'), and it is ruled by the equation

)))(()(()()1(
11

∑∑
==

+′−+−
′

∆+=+
N

k

kikjj

H

j

iji

i

ii Iunvn
t

nn θγσγ
τ

γγ (2)

 where γi is the state of the hidden neuron i, τ'i is a hidden neuron time constant, vij is the

weight of the connection from hidden neuron j to i, θ'j is a bias term, N is the number of

sensory inputs, uik is the weight of the connection from the sensory input k to the hidden

neuron i, Ik is the sensory input k, and H, ∆t and σ(x) are defined as before.

Note that this two-layer architecture corresponds to a fully connected CTRNN where, as

shown in Figure 3, some connections were removed. The numerical results are exactly the

same but less processing is required here because only N·H + H·H + H·M floating point

multiplications are necessary for every time step, compared to N·H + (H+M)
2
 for a fully

connected network where the corresponding connections would be set to zero.

The new motor neuron states are computed in the first phase, because this calculation

requires knowledge of the previous hidden neuron states. If the sequential order of the two

phases was inverted then the new motor neuron state would be calculated from the new hidden

neuron states and this would no longer correspond to the correct processing sequence of a

CTRNN.

4.2.5 Bilateral Symmetry

Bilateral symmetry was another important technique used to keep the number of evolvable

parameters low. Bilateral symmetry was applicable here because both the steering and the

aiming tasks are intrinsically symmetrical; a sensory pattern perceived on the left side of the

tank (or turret) is expected to produce a motor activation that is symmetrically identical to the

same sensory input perceived on the right side.

 6

4.2.6 Genetic Encoding

The neural network parameters are encoded into a genotype of floating point numbers

initialized with values in the range [0, 1]. As a result of the bilateral symmetry the genotype

size is divided by two because two symmetrical neurons (see the axis of symmetry in Figure

3) are encoded together.

Hidden Neurons 0 and 3

θ' τ' θ u v

0 1 2 3 4 5 6 7 8 9 10 11 12

However bilateral symmetry also adds some complexity to the genetic decoding; the weight

matrices u, v and w must be decoded using bi-axial symmetry.

4.3 Genetic Algorithm
For all the experiments described in this essay a population of 100 genotypes was evolved.

The genetic algorithm divides the genotypes into 50 groups of 2. Two genotypes at a time are

embodied into tanks (phenotypes) and placed into the simulator at a random position.

According to the setup, 1 or 5 fights take place with the same two genotypes; starting every

time with different position and orientation, and the average fitness is calculated. This is better

explained with the short pseudo-code below:

for (each generation) {
 for (each group) {
 getTwoGenotypes()
 for (each fight) {
 embodyGenotypesIntoTanks()
 simulateFight()
 measureFitness()
 destroyTanks()
 }
 averageFitness()
 }
 sortByFitness()
 reproduce()
 mutate()
}

Every fight last for 4000 simulated time units which correspond to about one second of real

time.

4.3.1 Mutation

Floating point versus integer encoding was used in order to avoid "hamming cliffs"
4
. Two

different types of mutation were used. The first type is a floating point mutation with

probability 0.04 of mutation per gene; a random number from a Gaussian distribution with

mean 0 and standard deviation 1 is added to the gene value.

4 Hamming cliffs are a common problem with binary encoding. For example if the binary number 00101101 is

mutated to 01101101, although only one bit is changed, the real value difference is large (64).

Motor Neurons 0 and 1

τ w

26 27 28 29 30

Hidden Neurons 1 and 2

θ' τ' θ u v

13 14 15 16 17 18 19 20 21 22 23 24 25

 7

The second type is the hypersphere mutation; the whole genotype is considered as an N-

dimensional vector. A random N-dimensional mutation vector is added to the genotype. The

direction of the mutation vector is chosen in every dimension from a uniform distribution,

while its length is chosen from a Gaussian distribution with mean 0 and standard deviation 1.

Standard deviation 5.0 and 0.2 were also used in some experiments, where specified.

4.3.2 Crossover

In every experiment, a single point crossover was applied with a probability 0.05. No mutation

was applied on genotypes created through crossover.

4.3.3 Selection

Rank based selection was used with a mean viability of 0 offspring for the least fit genotype

and 2 offspring for the fittest genotype. An elitist fraction of 5% is copied unchanged (no

mutation or crossover) from the current generation to the next.

4.4 Fitness Functions

4.4.1 Steering Fitness

Finding the right fitness function to evolve motion and obstacle avoidance could have been a

delicate task. Fortunately there were many examples in the literature. The fitness function

from [Mondada & Floreano 2] was used successfully. It is defined as

)1()1(ivV −⋅∆−⋅=Φ (3)

where V is the average speed of the two motors, ∆v is the difference between the signed speed

value of the two motors (positive values are forward, and negative values are backwards), i is

the activity value of the most active sensor, meaning the closest to an obstacle (a value of 1

corresponds to a collision and a value of 0 means no obstacle). All three variables were scaled

to lie between 0 and 1. Unlike [Mondada & Floreano 1995] a signed value of V was used here

for the tanks and therefore going backwards counted as negative fitness. Therefore the tanks

"preferred" the front direction on account of the fitness function, whereas in [Mondada &

Floreano 2] the Khepera robots "preferred" the front motion because they had more sensors at

the front and it was easier to avoid collision in that direction.

The modified fitness function without sensor activity also allowed the evolution of fast

tanks that were actually less "reluctant" to move close to the walls and therefore were better

suited to pass each other in narrow passages.

)1(vV ∆−⋅=Φ (4)

4.4.2 Aiming Fitness

In the tank game many objects are moving: the shooting tank, the target tank, the turrets and

the shells. The shells move in straight lines, but the tanks can have quite unpredictable

trajectories. For that reason, counting the fitness as the number of shell hits on the opponent's

tank would leave too much to chance. It was not certain that a slightly more evolved neural

controller would score significantly better than a less evolved one. For that reason it was

 8

decided that the fitness function should reward correct aiming only, without taking into

account the actual number of shell hits. Furthermore, it was decided to grant a partial fitness

reward for a partially accomplished aiming task; aiming with the lateral vision sensors would

be rewarded, but to a lesser extent than aiming with the central ones. The chosen fitness

function was:

∑
=

′=Φ
N

i

iirI
1

 (5), where


 >

=′
otherwise

I
I

i

i
0

01

and where N is the number of vision sensors, Ii is the current activation value of sensor i, ri is a

reward value for the sensor i, and was defined as [0.1, 0.3, 1.0, 1.0, 0.3, 0.1] thus encouraging

more strongly activity of central vision sensors. The firing mechanism was designed to be

distinct from the neural controller and to be triggered automatically when at least one of the

central vision sensors was activated.

5 Training and results
The genotypes were initialized with uniform random numbers in the range [0, 1]. These

numbers were scaled to become suitable neural network parameters but were allowed, through

mutations, to exceed the initial range. The network weights u, v and w were scaled to lie in the

range [-5, 5], allowing bi-stable neurons. The neuron biases were scaled to the range [-2, 2]

and the neuron time constant to the range [1, 10]. The integration time step ∆t was 0.1. The

network states y and γ were initialized to 0.

5.1.1 First experiment

A population of 100 genotypes was evolved in an empty arena of 140 x 80 units. After 200

generations, around 15 hours of real time, the resulting behaviour was fast forward motion,

efficient wall avoidance and somewhat less efficient tank avoidance.

Figure 4: Straight motion and collision avoidance after 200 generations

The tanks learned to move completely straight (Figure 4) and to turn only as a response to

sensory activity.

 9

Figure 5: The learning curves: Steering (left), aiming (right). The upper curves show the best individual of

each generation.

This resulting behaviour, made of straight runs and sharp turns, is almost the best possible

result that can be obtained with the specified fitness function. The best result would be to

follow the outer wall and turn 90° at each corner. Aiming behaviour did not work at this point

(see Figure 5). Regular rotation of the turrets, clockwise or counter clockwise, was the only

result.

5.1.2 Second Experiment

The desired aiming behaviour failed to appear with the previous setup and therefore the task

needed to be further simplified. The decision was made to evolve the aiming behaviour in

three steps; first starting with an empty environment and immobile tanks, then adding motion

and finally, adding walls. The same parameters as in the previous experiment were used, but

the tank motors were disconnected and the tanks were placed back to back, one in the upper

part of the arena and the other one in the lower part.

Figure 6: Two motionless tanks "staring" at each other.

At the start of each "fight", the upper tank's turret was oriented straight up and the lower tank's

turret was looking straight down. The idea of this configuration was to make it impossible for

 10

a turret to have the correct orientation towards the other tank by chance; "deliberate" aiming

was required. Though, with this configuration, all the vision sensors remained inactive. No

input was injected into the neural network and therefore, because of the bilateral symmetry,

exactly the same output was produced for both the left and right turret motors. For that reason

the turret did not move at all. The problem was corrected by injecting a small amount of

Gaussian noise into the vision sensors. Afterwards the desired behaviour appeared quickly at

around the 50
th

 generation. The tanks learned to turn the turret and "stare" at each other as is

shown in Figure 6 where the sensor rays are represented.

Figure 7: Evolution of aiming behaviour in three phases

After 175 generations the setup was modified and the tanks were allowed to move freely.

Since the task of aiming at a mobile object was more difficult, a drop appears in the learning

curve at position A (Figure 7). Then again the mean fitness increased until around the 210
th

generation. Then walls were placed in the simulator resulting in another drop at position B.

Afterwards the fitness increased only slightly. Note that the best individuals' fitnesses are

bounded at around 5500 points. This maximal score is reached when two tanks collide and

then are unable to resume motion. In this case the aiming task is very easy and many points

are collected.

5.1.3 Third Experiment

A new experiment was started with a new random population, and an empty arena. This time

hypersphere mutation was used. All other parameters were kept as in the previous

experiments. The standard deviation of the mutation magnitude was initially 5.0. At the 100
th

generation (A) the mutation magnitude was lowered to 1.0 and at the 150
th

 generation (B) it

was lowered to 0.2 (See Figure 8).

Hypersphere mutation was more successful than the random gene mutation. A good

aiming behaviour was obtained after 220 generations without the initial phase of

immobilization. Obstacle avoidance was flawless; the tanks moved in straight lines and turned

just in front of obstacles. When collision occurred the tanks would reverse, turn and resume

the forward motion. A steep fitness increase can be observed in (A) where the mutation vector

magnitude is decreased. The initial mutation magnitude of 5.0 was apparently too disruptive.

 11

Figure 8: Progression of the average and maximum fitness for steering (left) and aiming (right). Changes

to lower mutation magnitude appear in A and B.

With this setup, because there were no walls and because the vision sensor length was 140,

just like the arena width, it was theoretically possible for a tank to see the enemy from

everywhere but from two opposite corners of the arena. Since correct aiming was possible at

almost every instant of a fight, it was therefore interesting to measure the aiming performance.

Figure 9 and Figure 10 show the aiming angle error measured from one of the tanks. The

aiming angle error indicates the difference between the current turret angle and the actual

enemy sight angle computed exactly by the simulator. The horizontal axis represents a run of

2500 simulated time units (a complete fight is 4000 units) and the vertical axis shows the

aiming angle error measured between –π and π.

Figure 9: Turret angle error versus time in an 80 x 140 arena.

Figure 9 shows a run in an arena of standard size (80 x 140). After an initial search and

"scanning" the turret finds the enemy which is then tracked with some oscillations. The enemy

sight is lost two times. The first time, at around 500 time units, the turret faces in the opposite

direction but then recovers. The second time the turret does three full rotations of 360° without

noticing the enemy. The tracking is imperfect because when the two tanks are far from each

other, the sensor signals are weak due to the distance. And furthermore, even if the turret is

looking in precisely the correct direction, there is not always an intersection with a vision

sensor ray because the space between the rays becomes larger with the distance.

 12

Figure 10: Turret angle error versus time in an 80 x 80 arena.

Figure 10 shows the turret angle error measured in a reduced arena of 80 x 80. As opposed to

what happens in the larger arena, the aiming system does not lose the enemy's track with this

setup because the signals are stronger and the rays closer.

5.1.4 Fourth Experiment

The previous experiment worked very well and the tanks developed remarkable steering and

aiming performance. Now the last step was to put them in the final game environment with

walls. For this experiment, the fitness was no longer averaged but rather computed for one

fight only, in order to obtain results more quickly. The hypersphere mutation magnitude was

reset to mean 0 and standard deviation 1. Four walls as shown in Figure 12 were introduced.

The other parameters were kept as before.

Figure 11: Re-adaptation of the steering behaviour to a walled environment.

With this new setup, the tanks started very badly with a steering fitness near 200, while it was

around 2500 in the empty arena. Their training in the open environment was not very

compatible with the narrow passages of the walled environment. The tanks were too "afraid"

of entering and "hesitating" to move into narrow passages. However after around 200

generations they adapted and Figure 12 shows that the tank tracks remain safely away from

the walls.

 13

Figure 12: Tank fight into an arena with walls.

At this point the objective was reached, the tanks had developed good fighting skills and

watching them was quite entertaining.

5.1.5 Fifth Experiment

At this time it was decided to check the earlier assumption that a single network would be less

appropriate to solve the tasks than two separate networks. The tanks were modified in order to

host a single neural network with 8 hidden neurons. The 12 sensor inputs and 4 motor outputs

were connected to this network respecting bilateral symmetry. Then a new experiment was

started, using exactly the same simulator and arena as before. The aiming behaviour

developed, but only in an empty arena of immobile tanks. When the tanks were transferred to

a mobile environment the aiming ability failed to readapt. On the other hand steering

developed quickly and was able to readapt to every environment.

6 Discussion

6.1 Genotypes
In order to evaluate the suitability of the chosen initial parameter ranges, the two genotype

populations were examined more closely. The mean value and standard deviation of each gene

was computed and compared (see values in the appendix). There is no noticeable similitude in

weight, bias or time constant between the two networks and therefore it is difficult to make

any assumption as to what would have been more appropriate initial ranges. Figure 13 shows

both populations as grey-level bitmaps; each line represents a single genotype. Both bitmaps

share the same scale of grey-levels and therefore they can be compared; visually speaking,

they differ totally. Because both populations encode exactly the same network architecture this

dissimilarity might reflect the different solutions to the different tasks, but note evolution can

also lead to a different outcome every time. For example the roles of two hidden neurons in

the network can be swapped if all their parameters are equally and adequately swapped.

On the other hand, inside each population, a high degree of homogeneity is observed

even though several solutions are theoretically possible. Eventually a larger population and a

 14

spatially distributed genetic algorithm as in [Cliff & Miller 1996], where crossover takes place

primarily with neighbours would provide a less homogenous set of solutions.

Figure 13: The final population of the fourth experiment, shown as grey levels: steering (left) and aiming

(right). Each population is made of 100 genotypes (lines) and 31 genes (columns).

6.2 Two versus one network
The choice of using two distinct neural networks to evolve the game agents turned out to be

the right one. The fifth experiment that used a single network did not allow obtaining results

of the same quality as the previous design. In real tanks, steering and shooting are also carried

out by two different operators. However many real tanks must stop before being able to shoot

because accurate aiming is difficult from a vehicle in motion. In the simulation this type of

behaviour would also have been an advantage. With a different design this kind of behaviour

might have evolved by itself or could also have been programmed specifically in a kind of

"subsumption architecture" where the different behaviour would have different priorities and

therefore firing would pre-empt motion.

7 Conclusions
The steering behaviour evolved beyond expectations and was able to avoid static as well as

mobile obstacles. It is however difficult to say if this performance was superior to that of a

purely reactive system. To make sure it would be interesting to compare the performance of

evolved feed-forward and CTRNN systems.

The aiming behaviour worked equally fine, but nothing like short-time memory seemed

to appear. As soon as the targeted tank disappeared behind a wall, tracking was interrupted

and the scanning behaviour resumed. Maybe the memory effect was too short for human eyes

to notice. In any case the reason was not that the initial time constants were too small, because

the evolutionary process tended to make them even shorter than the initial values.

 15

In the tank design, the fitness for both steering and aiming was computed exclusively from

information available to the agent through its sensors and motors. There was no reference to

the external world or simulator data; therefore the tanks were learning autonomously. For that

reason, this functionality is, in theory, transposable to physical robots.

Evolving a neural network to accomplish even a simple task can be tricky. Sometimes

the evolution process needs a bit of supervision from the human who can set up intermediate

goals or provide a fitness function that partially rewards partially fulfilled objectives. At other

times, the evolution process is too "intelligent"; it every opportunity to do the most

unexpected. We are always too naïve about the expected outcome of evolution.

8 References
R. D. Beer (1996). Towards the Evolution of Dynamical Neural Networks for Minimally

Cognitive Behavior. In P. Maes, M. Mataric, J. Meyer, J. Pollack and S. Wilson (Eds.), From

animals to animats 4: Proceedings of the Fourth International Conference on Simulation of

Adaptive Behavior (pp. 421-429). MIT Press.

A. C. Slocum, D. C. Downey, R .D. Beer (2000). Further Experiments in the Evolution of

Minimally Cognitive Behavior: From Perceiving Affordances to Selective Attention. In J.

Meyer, A. Berthoz, D. Floreano, H. Roitblat and S. Wilson (Eds.), From Animals to Animats

6: Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior.

Cambridge, MA: MIT Press.

F. Mondada & D. Floreano (1995). Evolution of Neural Control Structures: Some Experiments

on Mobile Robots. In Robotics and Autonomous Systems, 16, 183-195.

J. Blynel & D. Floreano (2002). Levels of Dynamics and Adaptive Behavior in Evolutionary

Neural Controllers. In B. Hallam, D. Floreano, J. Hallam, G. Hayes, and J.-A. Meyer, editors.

From Animals to Animats 7: Proceedings of the Seventh International Conference on

Simulation on Adaptive Behavior, MIT Press.

D. Floreano (1998). Evolutionary Robotics in Behavior Engineering and Artificial Life. In T.

Gomi (Ed.), Evolutionary Robotics, Ontario (Canada): AAI Books, 1998.

D. Cliff & G. F. Miller (1996). Co-evolution of Pursuit and Evasion II: Simulation Methods

and Results. In P. Maes et al. (Eds.). From Animals to Animats IV, Procs. of the Fourth

International Conerence on Simulation of Adaptive Behaviour, MIT Press, pp. 506-515.

N. Jakobi (1998). Running Across the Reality Gap: Octopod Locomotion Evolved in a

Minimal Simulation. Proceedings of the First European Workshop on Evolutionary Robotics:

EvoRobot'98, 1998.

R. D. Beer. Lecture notes: Continuous-Time Recurrent Neural Networks (CTRNNs)

http://vorlon.ces.cwru.edu/~beer/EECS477/CTRNNIntro.pdf

 16

9 Appendix

9.1 Web link
A demo version of the program is available at:

http://www.yvanbourquin.com/tanks

9.2 Evolved Genotype Populations

Gene number Steering (mean) Aiming (mean) Steering (stdev) Aiming (stdev)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

11.111

-3.6949

-3.9531

1.5967

-2.3576

-0.92907

-2.4717

4.758

-0.10602

2.7485

-2.0064

1.3315

5.4557

1.0301

5.3569

-0.71664

4.1917

-1.2546

0.27051

-0.37244

5.1884

0.36488

-1.8732

-2.3007

1.5081

-0.78753

-0.90902

0.01729

-1.039

-1.9452

11.009

 -9.7205

 -15.5612

 -6.3987

 -11.9028

 -9.1755

 -12.6139

 -16.9800

 -23.3588

 -15.1250

 -18.3080

 -12.8052

 -17.4364

 -9.6166

 -10.6721

 -4.9885

 -8.1946

 -10.0580

 -7.2639

 -7.5120

 -7.3169

 -4.1023

 -0.0295

 -5.7948

 -3.4411

 -10.2852

 -2.6291

 -7.8090

 -10.0884

 -9.7704

 -10.3467

 -8.5732

 0.4143

 0.3741

 0.5726

 0.4640

 0.3734

 0.3539

 0.4348

 0.3696

 0.3186

 0.4574

 0.2630

 0.3739

 0.4839

 0.3643

 0.4225

 0.4686

 0.4398

 0.3280

 0.4868

 0.3630

 0.4962

 0.4202

 0.4388

 0.5233

 0.3819

 0.5681

 0.3712

 0.5173

 0.5536

 0.3975

 0.5742

 0.7477

 0.7167

 0.7822

 0.6662

 0.5114

 0.6825

 0.8969

 0.8477

 0.9489

 0.8646

 0.6905

 0.8181

 0.6171

 0.8235

 0.6353

 0.7447

 0.6578

 0.5008

 0.9902

 1.0154

 0.5868

 0.6166

 0.8130

 0.3902

 0.6085

 0.8954

 0.6850

 0.5261

 0.5573

 0.4823

 0.8793

 17

9.3 Listings
All the listing have been written exclusively by the author and for the purpose of this essay,

with the exception of the two files "Vector2.h" and "Vector2.cpp" which were taken over from

the author’s former work, and also with the exception of the method for generating random

Gaussian numbers in the file “Random.cpp” which was taken over from Dr. Everett. F. Carter

Jr., Generating Gaussian Random Numbers: http://www.taygeta.com/random/gaussian.html

9.3.1 AutoTank.h

#ifndef AutoTank_H
#define AutoTank_H

// Description: Autonomous Tank Controlled by 2 CTR NNs
// Author: Yvan Bourquin

class NeuralNetwork;
class Vector2;

#include "Tank.h"

class AutoTank : public Tank
{
public:
 // constructor
 AutoTank(const Vector2 &initialPosition,
 double alpha, const double *steeringCode,
 const double *aimingCode);

 // destructor
 virtual ~AutoTank();

 // update neural sensors, neural network and posit ion
 virtual void update();

 // draw the neural network
 void drawNetwork(const Graphics *graphics) const;

 // get the code size (number of double) to encode
 // the steering controller
 static int getSteeringCodeSize();

 // get the code size (number of double) to encode
 // the aiming controller
 static int getAimingCodeSize();

private:
 NeuralNetwork *_steeringController;
 NeuralNetwork *_aimingController;
};

#endif

 18

9.3.2 AutoTank.cpp

#include "AutoTank.h"
#include "NeuralNetwork.h"
#include "ProximitySensor.h"
#include "VisionSensor.h"
#include "Random.h"

const int NUM_HIDDEN = 4;
const int NUM_TURRET_HIDDEN = 4;

AutoTank::AutoTank(const Vector2 &initialPosition, double alpha,
 const double *steeringCode, const double *ai mingCode)
 : Tank(initialPosition, alpha)
{
 _steeringController = new NeuralNetwork(NUM_PROXIM ITY_SENSORS,
 NUM_HIDDEN, NUM_BODY_MOTORS, steeringCode);
 _aimingController = new NeuralNetwork(NUM_VISION_S ENSORS,
 NUM_TURRET_HIDDEN, NUM_TURRET_MOTORS, aimingCode) ;
}

AutoTank::~AutoTank()
{
 delete _steeringController;
 delete _aimingController;
}

int AutoTank::getSteeringCodeSize()
{
 return NeuralNetwork::getCodeSize(NUM_PROXIMITY_SE NSORS,
 NUM_HIDDEN, NUM_BODY_MOTORS);
}

int AutoTank::getAimingCodeSize()
{
 return NeuralNetwork::getCodeSize(NUM_VISION_SENSO RS,
 NUM_TURRET_HIDDEN, NUM_TURRET_MOTORS);
}

void AutoTank::update()
{
 // connect proximity sensors to steering controlle r
 for (int i = 0; i < NUM_PROXIMITY_SENSORS; i++)
 _steeringController->setInput(i, getSensorOutput(i));

 _steeringController->update();

 // connect steering controller output to motors + inject some noise
 setLeftSpeed(_steeringController->getOutput(0)
 + Random::getGaussian() / 50.0);
 setRightSpeed(_steeringController->getOutput(1)
 + Random::getGaussian() / 50.0);

 // connect vision sensors to aiming controller + i nject some noise
 for (int j = 0; j < NUM_VISION_SENSORS; j++)
 _aimingController->setInput(j, getTurretSensorOut put(j)
 + Random::getGaussian() / 50.0);

 19

 _aimingController->update();

 // connect aiming controller output to turret
 setTurretRotationSpeed((_aimingController->getOutp ut(0) -
 _aimingController->getOutput(1)) / 5.0);

 Tank::update();
}

void AutoTank::drawNetwork(const Graphics *graphics) const
{
 _steeringController->draw(graphics);
}

9.3.3 Genotype.h

#ifndef Genotype_H
#define Genotype_H

// Description: General-purpose genotype with mutat ion and crossover operations
// Author: Yvan Bourquin

#include <stdio.h>

class Genotype
{
public:
 // constructor
 Genotype(int size);

 // copy constructor
 Genotype(const Genotype &);

 // destructor
 virtual ~Genotype();

 // assignment operator
 Genotype &operator = (const Genotype &);

 // mutation and crossover
 void hypersphereMutate();
 void locusMutate();
 Genotype crossover(const Genotype &other) const;

 // set/get fitness
 void setFitness(double fitness) { _fitness = fitne ss; }
 double getFitness() const { return _fitness; }

 // get array of floating points
 const double *getGenes() const { return _genes; }

 // read genotype from file
 void read(FILE *file);

 // write genotype to file
 void write(FILE *file) const;

 20

private:
 double *_genes; // genome
 int _size; // genome length
 double _fitness;
};

#endif

9.3.4 Genotype.cpp

#include "Genotype.h"
#include "Random.h"
#include <math.h>
#include <assert.h>

Genotype::Genotype(int size)
 : _size(size), _fitness(0.0)
{
 _genes = new double[_size];

 // initialize with random uniform numbers in the r ange [0,1]
 for (int i = 0; i < _size; i++)
 _genes[i] = Random::getUniform();
}

Genotype::Genotype(const Genotype &other)
 : _size(other._size), _fitness(other._fitness)
{
 _genes = new double[_size];

 for (int i = 0; i < _size; i++)
 _genes[i] = other._genes[i];
}

Genotype &Genotype::operator = (const Genotype &oth er)
{
 // avoid crash in case of inadvertant: a = a
 if (&other == this)
 return *this;

 delete [] _genes;

 _size = other._size;
 _genes = new double[_size];
 _fitness = other._fitness;

 for (int i = 0; i < _size; i++)
 _genes[i] = other._genes[i];

 return *this;
}

Genotype::~Genotype()
{
 delete [] _genes;
}

 21

void Genotype::hypersphereMutate()
{
 double length = Random::getGaussian() / 5.0;
 double *mutation = new double[_size];

 double sum = 0.0;
 for (int i = 0; i < _size; i++)
 {
 mutation[i] = Random::getUniform();
 sum += mutation[i] * mutation[i];
 }

 double ratio = length / sqrt(sum);
 for (i = 0; i < _size; i++)
 _genes[i] += mutation[i] * ratio;
}

// mutate a every gene with probability 0.04
void Genotype::locusMutate()
{
 for (int i = 0; i < _size; i++)
 if (Random::getUniform() < 0.04)
 _genes[i] += Random::getGaussian() / 4.0;
}

// single-point crossover
Genotype Genotype::crossover(const Genotype &other) const
{
 Genotype child(_size);

 // make sure we don't always start with the same g uy
 const double *mom, *dad;
 if (Random::getInteger(2) == 0)
 {
 mom = this->_genes;
 dad = other._genes;
 }
 else
 {
 mom = other._genes;
 dad = this->_genes;
 }

 int locus = Random::getInteger(_size);

 for (int i = 0; i < _size; i++)
 if (i < locus)
 child._genes[i] = mom[i];
 else
 child._genes[i] = dad[i];

 return child;
}

void Genotype::write(FILE *file) const
{

 22

 fprintf(file, "%d %.3f", _size, _fitness);

 for (int i = 0; i < _size; i++)
 fprintf(file, " %.3f", _genes[i]);
}

void Genotype::read(FILE *file)
{
 int size;
 fscanf(file, "%d", &size);

 assert(size == _size);

 fscanf(file, "%lf", &_fitness);

 for (int i = 0; i < _size; i++)
 fscanf(file, "%lf", &_genes[i]);
}

9.3.5 Graphics.h

#ifndef Graphics_H
#define Graphics_H

// Description: Graphic primitives
// Author: Yvan Bourquin

class Vector2;
class Quad2;
class Line2;

class Graphics
{
public:
 // constructor
 Graphics();

 // before rendering: organize coodinate system
 void preRender() const;

 // change current RGB color
 void setColor(float red, float green, float blue) const;

 // draw a line
 void drawLine(double x1, double y1, double x2, dou ble y2) const;
 void drawLine(const Vector2 &a, const Vector2 &b) const;
 void drawLine(const Line2 &line) const;

 // draw a quad (4 sided polygon) as alines
 void drawLineQuad(const Quad2 &q) const;

 // draw a filled quad
 void drawSolidQuad(const Quad2 &q) const;

 // change line width
 void setLineWidth(double width) const;

 23

 // flush all the pending graphical operations
 void flush() const;
};

#endif

9.3.6 Graphics.cpp

#include "Graphics.h"
#include "Vector2.h"
#include "Quad2.h"
#include "Line2.h"
#include <glut.h>
#include <gl/gl.h>

Graphics::Graphics()
{
}

void Graphics::preRender() const
{
 // white background
 glClearColor(1, 1, 1, 0);
 glClear(GL_COLOR_BUFFER_BIT);

 // reset the model matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // define coordinate system
 glTranslatef(-0.98, -0.98, 0);
 glScaled(0.0140, 0.0245, 1);
}

void Graphics::flush() const
{
 glFlush();
}

void Graphics::setColor(float red, float green, flo at blue) const
{
 glColor3f(red, green, blue);
}

void Graphics::drawLine(double x1, double y1, doubl e x2, double y2) const
{
 glBegin(GL_LINES);
 glVertex2d(x1, y1);
 glVertex2d(x2, y2);
 glEnd();
}

void Graphics::drawLine(const Vector2 &a, const Vec tor2 &b) const
{
 glBegin(GL_LINES);
 glVertex2d(a.x(), a.y());
 glVertex2d(b.x(), b.y());

 24

 glEnd();
}

void Graphics::drawLine(const Line2 &line) const
{
 glBegin(GL_LINES);
 glVertex2d(line.a().x(), line.a().y());
 glVertex2d(line.b().x(), line.b().y());
 glEnd();
}

void Graphics::drawLineQuad(const Quad2 &q) const
{
 glBegin(GL_LINES);
 glVertex2d(q.a().x(), q.a().y());
 glVertex2d(q.b().x(), q.b().y());
 glVertex2d(q.b().x(), q.b().y());
 glVertex2d(q.c().x(), q.c().y());
 glVertex2d(q.c().x(), q.c().y());
 glVertex2d(q.d().x(), q.d().y());
 glVertex2d(q.d().x(), q.d().y());
 glVertex2d(q.a().x(), q.a().y());
 glEnd();
}

void Graphics::drawSolidQuad(const Quad2 &q) const
{
 glBegin(GL_QUADS);
 glVertex2d(q.a().x(), q.a().y());
 glVertex2d(q.b().x(), q.b().y());
 glVertex2d(q.b().x(), q.b().y());
 glVertex2d(q.c().x(), q.c().y());
 glVertex2d(q.c().x(), q.c().y());
 glVertex2d(q.d().x(), q.d().y());
 glVertex2d(q.d().x(), q.d().y());
 glVertex2d(q.a().x(), q.a().y());
 glEnd();
}

void Graphics::setLineWidth(double width) const
{
 glLineWidth((float)width);
}

9.3.7 Line2.h

#ifndef Line2_H
#define Line2_H

// Description: Abstraction of a two-dimensional li ne
// Author: Yvan Bourquin

#include "Vector2.h"
#include <iostream.h>

class Line2
{

 25

public:
 // constructors
 Line2() : _a(0, 0), _b(0, 0) {}
 Line2(const Vector2 &a, const Vector2 &b) : _a(a), _b(b) {}
 Line2(double x1, double y1, double x2, double y2) : _a(x1, y1), _b(x2, y2)
 {}

 // compute the distance from this line to the spec ified point
 // "infinite" indicated whether the line should be considered
 // as a line segment or an infinite line
 double distanceToPoint(const Vector2 &point, bool infinite = false) const;

 // return the slope m of the line which equation i s in the form:
 // y = m * x + b
 double slope() const;

 // compute b, the height of the intersection of th e line with the
 // y-axis: y = m * x + b
 double intercept() const;

 // line length
 double length() const;

 // translation
 void translate(const Vector2 &trans);

 // rotate line around origin
 // angle is given in radian
 void rotate(double angle);

 // compute and return the intersection point betwe en two lines
 // if there is no intersection return NO_INTERSECT .
 Vector2 intersects(const Line2 &that) const;
 static const Vector2 NO_INTERSECT;

 // return read-only line endpoints
 const Vector2 &a() const { return _a; }
 const Vector2 &b() const { return _b; }

 // return assignable line endpoints
 Vector2 &a() { return _a; }
 Vector2 &b() { return _b; }

 // print line to output stream
 friend ostream &operator << (ostream &, const Line 2 &);

private:
 Vector2 _a, _b; // line endpoints
};

inline double Line2::slope() const
{
 return (_b.y() - _a.y()) / (_b.x() - _a.x());
}

inline double Line2::intercept() const
{

 26

 return _a.y() + (-_a.x() / (_b.x() - _a.x())) * (_ b.y() - _a.y());
}

inline void Line2::translate(const Vector2 &trans)
{
 _a += trans;
 _b += trans;
}

inline ostream &operator << (ostream &os, const Lin e2 &l)
{
 cout << "[" << l._a << l._b << "]";
 return os;
}

#endif

9.3.8 Line2.cpp

#include "Line2.h"

const Vector2 Line2::NO_INTERSECT(-999999, -999999) ;

// Compute the length of vector (x, y).
double Line2::length() const
{
 return (_b - _a).length();
}

void Line2::rotate(double angle)
{
 _a.rotate(angle);
 _b.rotate(angle);
}

Vector2 Line2::intersects(const Line2 &that) const
{
 // compute first edge equation
 double c1 = intercept();
 double m1 = slope();

 // compute second edge equation
 double c2 = that.intercept();
 double m2 = that.slope();

 // are the lines parallel ?
 if (m1 == m2)
 return NO_INTERSECT;

 double x1 = _a.x();
 double x2 = _b.x();
 double x3 = that._a.x();
 double x4 = that._b.x();
 double y1 = _a.y();
 double y2 = _b.y();
 double y3 = that._a.y();
 double y4 = that._b.y();

 27

 // make sure x1 < x2
 if (x1 > x2) {
 double temp = x1;
 x1 = x2;
 x2 = temp;
 }

 // make sure x3 < x4
 if (x3 > x4) {
 double temp = x3;
 x3 = x4;
 x4 = temp;
 }

 // make sure y1 < y2
 if (y1 > y2) {
 double temp = y1;
 y1 = y2;
 y2 = temp;
 }

 // make sure y3 < y4
 if (y3 > y4) {
 double temp = y3;
 y3 = y4;
 y4 = temp;
 }

 // intersection point in case of infinite lines
 double x;
 double y;

 // infinite slope m1
 if (x1 == x2)
 {
 x = x1;
 y = m2 * x1 + c2;
 if (x > x3 && x < x4 && y > y1 && y <y2)
 return Vector2(x, y);
 else
 return NO_INTERSECT;
 }

 // infinite slope m2
 if (x3 == x4)
 {
 x = x3;
 y = m1 * x3 + c1;
 if (x > x1 && x < x2 && y > y3 && y < y4)
 return Vector2(x, y);
 else
 return NO_INTERSECT;
 }

 // compute lines intersection point
 x = (c2 - c1) / (m1 - m2);

 28

 // see whether x in in both ranges [x1, x2] and [x3, x4]
 if (x > x1 && x < x2 && x > x3 && x < x4)
 return Vector2(x, m1 * x + c1);

 return NO_INTERSECT;
}

9.3.9 Main.cpp

// Description: Tank Wars!
// Author: Yvan Bourquin

#include <glut.h>
#include <gl/gl.h>
#include <stdlib.h>
#include <time.h>

#include "Simulator.h"
#include "Graphics.h"
#include "ProximitySensor.h"
#include "VisionSensor.h"

static Simulator *simulator = 0;
static Graphics *graphics = 0;
static bool visible = true;
static double delay = 50;
static int mode = 0;

void displayFunction(void)
{
 if (visible)
 {
 switch (mode)
 {
 case 0:
 simulator->draw(graphics);
 break;
 case 1:
 simulator->drawNetwork(graphics);
 break;
 }

 glutSwapBuffers();
 }
}

void reshapeFunction(int width,int height)
{
 glViewport(0, 0, width, height);
 displayFunction();
}

void keyboardFunction(unsigned char key, int x, int y)
{
 if (key >= '0' && key <= '9')
 simulator->numberPressed(key - '0');

 29

 switch (key)
 {
 case 'p':
 ProximitySensor::toggleVisibility();
 break;

 case 'v':
 VisionSensor::toggleVisibility();
 break;

 case '+':
 delay /= 2;
 break;

 case '-':
 delay *= 2;
 break;
 }
}

void specialFunction(int key,int x,int y)
{
 switch (key)
 {
 case GLUT_KEY_F1:
 mode = 0;
 break;

 case GLUT_KEY_F2:
 mode = 1;
 break;
 }
}

void idleFunction()
{
 if (! visible)
 simulator->update();
}

void timerFunction(int value)
{
 if (visible)
 {
 glutTimerFunc(delay, &timerFunction, 0);
 simulator->update();
 glutPostRedisplay();
 }
}

void visibilityFunction(int state)
{
 switch (state)
 {
 case GLUT_VISIBLE:
 glutTimerFunc(delay, &timerFunction, 0);

 30

 visible = true;
 break;

 case GLUT_NOT_VISIBLE:
 visible = false;
 break;
 }
}

#include "Quad2.h"

int main(int argc, char* argv[])
{
 // initialize random number generator
 srand((unsigned)time(NULL));

 glutInit(&argc, argv);

 // get simulator instance
 simulator = Simulator::instance();

 // create graphic context
 graphics = new Graphics();

 // create and position window
 glutInitWindowSize(700, 400);
 glutInitWindowPosition(0, 0);
 int win = glutCreateWindow("Tanks!");

 // install callbacks
 glutDisplayFunc(&displayFunction);
 glutReshapeFunc(&reshapeFunction);
 glutKeyboardFunc(&keyboardFunction);
 glutSpecialFunc(&specialFunction);
 glutVisibilityFunc(&visibilityFunction);
 glutIdleFunc(&idleFunction);
 glutTimerFunc(0, &timerFunction, 0);

 // start event processing
 glutMainLoop();

 return 0;
}

9.3.10 Matrix.h
#ifndef Matrix_H
#define Matrix_H

// Description: General purpose N x M matrix and as sociated operators
// Author: Yvan Bourquin

#include <assert.h>
#include <iostream.h>
#include "Vector.h"

class Matrix

 31

{
public:
 // constructs a uninitialized N x M matrix
 Matrix(int lines, int columns);

 // copy constructor
 Matrix(const Matrix &other);

 // destructor
 ~Matrix();

 // return number of lines in the matrix
 int size() const { return L; }

 // matrix line access
 const Vector &operator [] (int index) const;
 Vector &operator [] (int index);

 // assignement operator
 Matrix &operator = (const Matrix &);

 // unary + and - operator
 Matrix operator + () const { return *this; }
 Matrix operator - () const { return 0.0 - *this ; }

 // matrix-matrix addition and substraction
 Matrix operator + (const Matrix &) const;
 Matrix operator - (const Matrix &) const;

 // matrix-vector multiplication
 Vector operator * (const Vector &v) const;

 // matrix-scalar operations
 Matrix operator + (double) const;
 Matrix operator - (double) const;
 Matrix operator * (double) const;
 Matrix operator / (double) const;

 // scalar matrix operations
 friend Matrix operator + (double, const Matrix &);
 friend Matrix operator - (double, const Matrix &);
 friend Matrix operator * (double, const Matrix &);
 friend Matrix operator / (double, const Matrix &);

 // print matrix to output stream
 friend ostream &operator << (ostream &os, const Ma trix &m);

private:
 Vector *a;
 const int L;
};

inline ostream &operator << (ostream &os, const Mat rix &m)
{
 os << "[" << endl;
 for (int l = 0; l < m.L; l++)
 os << m.a[l] << endl;

 32

 os << "]";

 return os;
}

inline const Vector &Matrix::operator [] (int index) const
{
 assert(index >= 0 && index < L);
 return a[index];
}

inline Vector &Matrix::operator [] (int index)
{
 assert(index >= 0 && index < L);
 return a[index];
}

inline Matrix::Matrix(int lines, int columns)
 : L(lines)
{
 Vector::setDefaultSize(columns);
 a = new Vector[L];
}

inline Matrix::Matrix(const Matrix &other)
 : L(other.L)
{
 a = new Vector[L];
 for (int l = 0; l < L; l++)
 a[l] = other.a[l];
}

inline Matrix::~Matrix()
{
 delete [] a;
}

inline Matrix &Matrix::operator = (const Matrix &ot her)
{
 assert(L == other.L);

 for (int l = 0; l < L; l++)
 a[l] = other.a[l];

 return *this;
}

inline Matrix Matrix::operator + (const Matrix &oth er) const
{
 assert(L == other.L);

 Matrix b(L, other[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] + other.a[l];

 return b;

 33

}

inline Matrix Matrix::operator - (const Matrix &oth er) const
{
 assert(L == other.L);

 Matrix b(L, other[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] - other.a[l];

 return b;
}

inline Vector Matrix::operator * (const Vector &v) const
{
 assert(a[0].size() == v.size());

 Vector b(L);
 for (int l = 0; l < L; l++)
 b[l] = a[l].dot(v);

 return b;
}

inline Matrix Matrix::operator + (double d) const
{
 Matrix b(L, a[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] + d;

 return b;
}

inline Matrix Matrix::operator - (double d) const
{
 Matrix b(L, a[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] - d;

 return b;
}

inline Matrix Matrix::operator * (double d) const
{
 Matrix b(L, a[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] * d;

 return b;
}

inline Matrix Matrix::operator / (double d) const
{
 Matrix b(L, a[0].size());
 for (int l = 0; l < L; l++)
 b.a[l] = a[l] / d;

 34

 return b;
}

inline Matrix operator + (double d, const Matrix &a)
{
 Matrix b(a.L, a[0].size());
 for (int l = 0; l < a.L; l++)
 b.a[l] = d + a.a[l];

 return b;
}

inline Matrix operator - (double d, const Matrix &a)
{
 Matrix b(a.L, a[0].size());
 for (int l = 0; l < a.L; l++)
 b.a[l] = d - a.a[l];

 return b;
}

inline Matrix operator * (double d, const Matrix &a)
{
 Matrix b(a.L, a[0].size());
 for (int l = 0; l < a.L; l++)
 b.a[l] = d * a.a[l];

 return b;
}

inline Matrix operator / (double d, const Matrix &a)
{
 Matrix b(a.L, a[0].size());
 for (int l = 0; l < a.L; l++)
 b.a[l] = d / a.a[l];

 return b;
}

#endif

9.3.11 NeuralNetwork.h
#ifndef NeuralNetwork_H
#define NeuralNetwork_H

// Description: General purpose CTRNN type neural n etwork with
// customizable number of inputs, hidd en and output neurons
// Biases, time constant and connectio n weights are initialized
// in fixed ranges
// Author: Yvan Bourquin

#include "Vector.h"
#include "Matrix.h"

class Graphics;

 35

class NeuralNetwork
{
public:
 // constructor: create a CTRNN with N inputs, H h idden neurons,
 // M output neurons, and initialize it with genoty pe "code"
 NeuralNetwork(int n, int h, int m, const double *c ode);

 // set sensory input I
 void setInput(int index, double value) { I[index] = value; }

 // compute new network state Y(t+1)=Y(Y(t),I(t))
 void update();

 // get network state Y
 double getOutput(int index) const { return Y[index]; }

 // draw neural network current state
 void draw(const Graphics *graphics) const;

 // compute required genotype size for N, H and M
 static int getCodeSize(int N, int H, int M);

private:
 const int N; // number of inputs
 const int H; // number of hidden neurons
 const int M; // number of output neurons

 Vector I; // input vector
 Vector Yh; // hidden layer neuron states
 Vector Y; // ouput layer neuron states
 Vector Th; // time constants of hidden layer
 Vector To; // time constants of output layer
 Vector Bh; // biases of hidden layer
 Vector Bo; // biases of output layer

 Matrix U; // input to hidden neuron connections
 Matrix V; // hidden neurons recurrent and self-con nections
 Matrix W; // hidden to output neuron connections

 // local methods
 void setCode(const double *code);
 void drawNeuron(const Graphics *graphics, double x ,
 double y, double activity) const;
};

#endif

9.3.12 NeuralNetwork.cpp
#include "NeuralNetwork.h"
#include <assert.h>
#include "Quad2.h"
#include "Graphics.h"

// intial parameter ranges
static const double MIN_WEIGHT = -5.0;
static const double MAX_WEIGHT = 5.0;

 36

static const double MIN_BIAS = -2.0;
static const double MAX_BIAS = 2.0;
static const double MIN_TAU = 1.0;
static const double MAX_TAU = 10.0;

NeuralNetwork::NeuralNetwork(int n, int h, int m, c onst double *code)
: N(n), H(h), M(m), I(n), Yh(h), Y(m), Th(h), To(m) , Bh(h),
 Bo(h), U(h, n), V(h, h), W(m, h)
{
 // intialize to zero:
 I.zero(); // inputs
 Yh.zero(); // hidden neuron states
 Y.zero(); // output neuron states

 setCode(code);
}

// compute sigmoid for a vector
Vector sigmoid(const Vector &X)
{
 Vector Y(X.size());
 for (int l = 0; l < X.size(); l++)
 Y[l] = 1.0 / (1.0 + exp(-X[l]));

 return Y;
}

// compute new neural network states
// the code is very short here because + - * / and = are overloaded
// operators that handle matrix and vector operatio ns
void NeuralNetwork::update()
{
 // compute output neuron states
 Y = Y + 0.1 / To * (-Y + W * sigmoid(Yh - Bo));

 // compute hidden neuron states
 Yh = Yh + 0.1 / Th * (-Yh + V * sigmoid(Yh - Bh) + U * I);
}

// draw neurons and synaptic connections
void NeuralNetwork::draw(const Graphics *graphics) const
{
 graphics->setLineWidth(2.0);
 graphics->setColor(0, 0, 0);

 for (int n = 0; n < N; n++)
 {
 double x1 = 35;
 double y1 = (n + 1) * 80 / (N + 1);

 for (int h = 0; h < H; h++)
 {
 double x2 = 70;
 double y2 = (h + 1) * 80 / (H + 1);
 graphics->drawLine(x1, y1, x2, y2);
 }
 }

 37

 for (int h = 0; h < H; h++)
 {
 double x1 = 70;
 double y1 = (h + 1) * 80 / (H + 1);

 for (int m = 0; m < M; m++)
 {
 double x2 = 105;
 double y2 = (m + 1) * 80 / (M + 1);
 graphics->drawLine(x1, y1, x2, y2);
 }
 }
 double dy = 80 / (N + 1);

 for (n = 0; n < N; n++)
 {
 double x = 35;
 double y = (n + 1) * 80 / (N + 1);
 drawNeuron(graphics, x, y, I[n]);
 }

 for (h = 0; h < H; h++)
 {
 double x = 70;
 double y = (h + 1) * 80 / (H + 1);
 drawNeuron(graphics, x, y, Yh[h]);
 }

 for (int m = 0; m < M; m++)
 {
 double x = 105;
 double y = (m + 1) * 80 / (M + 1);
 drawNeuron(graphics, x, y, Y[m]);
 }
}

// draw a single neuron
void NeuralNetwork::drawNeuron(const Graphics *grap hics, double x,
 double y, double activity) const
{
 float a = (float)activity;
 Quad2 q(2, 2, 2, -2, -2, -2, -2, 2);
 q.translate(x, y);
 graphics->setColor(a, a, a);
 graphics->drawSolidQuad(q);
 graphics->setColor(0, 0, 0);
 graphics->drawLineQuad(q);
}

int NeuralNetwork::getCodeSize(int N, int H, int M)
{
 return (3 * H + H * N + H * H + M + M * H) / 2;
}

// genotype to controller decoding:
// bilateral symmetry decoding and initial paramete r scaling are carried out

 38

// in this function
void NeuralNetwork::setCode(const double *code)
{
 const double *c = code;

 // hidden neurons
 for (int h = 0; h < H / 2; h++)
 {
 int k = H - h - 1;

 Bh[h] = Bh[k] = *c++ * (MAX_BIAS - MIN_BIAS) + MI N_BIAS;

 double t = *c++ * (MAX_TAU - MIN_TAU) + MIN_TAU;
 if (t < 0.2)
 t = 0.2;

 Th[h] = Th[k] = t ;
 Bo[h] = Bo[k] = *c++ * (MAX_BIAS - MIN_BIAS) + MI N_BIAS;

 for (int n = 0; n < N; n++)
 U[h][n] = U[k][N - n - 1] = *c++ * (MAX_WEIGHT - MIN_WEIGHT)
 + MIN_WEIGHT;

 for (int g = 0; g < H; g++)
 V[h][g] = V[k][H - g - 1] = *c++ * (MAX_WEIGHT - MIN_WEIGHT)
 + MIN_WEIGHT;
 }

 // motor neurons
 for (int m = 0; m < M / 2; m++)
 {
 int k = M - m - 1;

 double t = *c++ * (MAX_TAU - MIN_TAU) + MIN_TAU;
 if (t < 0.2)
 t = 0.2;

 To[m] = To[k] = t * (MAX_TAU - MIN_TAU) + MIN_TAU ;

 for (int h = 0; h < H; h++)
 W[m][h] = W[k][H - h -1] = *c++ * (MAX_WEIGHT - MIN_WEIGHT)
 + MIN_WEIGHT;
 }

 assert(c - code == getCodeSize(N, H, M));
}

9.3.13 Obstacle.h
#ifndef Obstacle_H
#define Obstacle_H

// Description: Abstract base class for quad-based collision detection
// Author: Yvan Bourquin

class Graphics;

 39

#include "Quad2.h"

class Obstacle {
public:
 // get collision detection bounds
 const Quad2 &getBounds() const { return _bounds; }

 // draw bounds
 virtual void draw(const Graphics *graphics) const = 0;

protected:
 Quad2 _bounds;
};

#endif

9.3.14 Population.h
#ifndef Population_H
#define Population_H

// Description: Genotype population with sorting an d reproduction
// Author: Yvan Bourquin

#include "Genotype.h"

class Population
{
public:
 // constructor
 Population(int popSize, int genSize);

 // destructor
 virtual ~Population();

 // load/save from file
 void save(const char *filename) const;
 void load(const char *filename);

 // sort population from most fit to least fit indi vidual
 void sort();

 // change generation
 // precondition:
 // population must be sorted before this function is called
 void reproduce();

 // current generation number
 int getGeneration() const { return _generation; }

 // get genetic code
 const double *getGenes(int index) const
 { return _genotypes[index]->getGenes(); }

 // get/set fitness
 void setFitness(int index, double fitness)
 { _genotypes[index]->setFitness(fitness); }

 40

 double getFitness(int index) const
 { return _genotypes[index]->getFitness(); }

private:
 Genotype **_genotypes; // genotypes
 int _size; // population size
 int _genotypeSize; // size of each genotype
 int _generation; // current generation
 double *_meanFitness; // vector of mean fitness
 double *_bestFitness; // vector of best fitness

 const Genotype *chooseParent() const;
};

#endif

9.3.15 Population.cpp
#include "Population.h"
#include "Random.h"
#include <stdlib.h>
#include <fstream.h>
#include <assert.h>

Population::Population(int populationSize, int geno typeSize)
{
 _size = populationSize;
 _genotypeSize = genotypeSize;
 _generation = 0;
 _genotypes = new Genotype*[_size];
 _meanFitness = new double[5000];
 _bestFitness = new double[5000];

 for (int i = 0; i < _size; i++)
 _genotypes[i] = new Genotype(genotypeSize);
}

Population::~Population()
{
 delete [] _bestFitness;
 delete [] _meanFitness;

 for (int i = 0; i < _size; i++)
 delete _genotypes[i];

 delete [] _genotypes;
}

void Population::load(const char *filename)
{
 FILE *file = fopen(filename, "r");
 if (! file)
 {
 printf("failed to open for reading: %s\n", filena me);
 return;
 }

 41

 int i;
 fscanf(file, "%d", &_generation);
 for (i = 0; i < _generation; i++)
 fscanf(file, "%lf", &_bestFitness[i]);

 for (i = 0; i < _generation; i++)
 fscanf(file, "%lf", &_meanFitness[i]);

 int size;
 fscanf(file, "%d", &size);

 assert(size == _size);

 for (i = 0; i < _size; i++)
 _genotypes[i]->read(file);

 fclose(file);
}

void Population::save(const char *filename) const
{
 FILE *file = fopen(filename, "w");
 if (! file)
 {
 printf("failed to open for writing: %s\n", filena me);
 return;
 }

 int i;
 fprintf(file, "%d\n", _generation + 1);

 for (i = 0; i < _generation + 1; i++)
 fprintf(file, "%.3f ", _bestFitness[i]);

 fprintf(file, "\n");

 for (i = 0; i < _generation + 1; i++)
 fprintf(file, "%.3f ", _meanFitness[i]);

 fprintf(file, "\n%d\n", _size);

 for (i = 0; i < _size; i++)
 {
 _genotypes[i]->write(file);
 fprintf(file, "\n");
 }

 fclose(file);
}

static int compare(const void *a, const void *b)
{
 return (*(Genotype**)a)->getFitness() >
 (*(Genotype**)b)->getFitness() ? -1 : +1;
}

const Genotype *Population::chooseParent() const

 42

{
 while (true)
 {
 int index = Random::getInteger(_size);
 if (index <= Random::getInteger(_size))
 return _genotypes[index];
 }
}

void Population::sort()
{
 // sort for rank selection
 qsort(_genotypes, _size, sizeof(Genotype*), &compa re);

 for (int k = 0; k < _size; k++)
 cout << _genotypes[k]->getFitness() << " ";

 cout << endl;

 _bestFitness[_generation] = _genotypes[0]->getFitn ess();

 double sum = 0.0;
 for (int i = 0; i < _size; i++)
 sum += _genotypes[i]->getFitness();

 _meanFitness[_generation] = sum / _size;
}

void Population::reproduce()
{
 Genotype **_nextGeneration = new Genotype*[_size];
 for (int i = 0; i < _size; i++)
 {
 Genotype *child = new Genotype(_genotypeSize);

 if (i < 5)
 *child = *_genotypes[i]; // elitism
 else
 {
 const Genotype *mom = chooseParent();
 if (Random::getUniform() < 0.05)
 {
 const Genotype *dad = chooseParent();
 *child = mom->crossover(*dad); // sexual reprod uction
 }
 else
 {
 *child = *mom; // asexual reproduction
 child->hypersphereMutate();
 }
 }

 child->setFitness(0.0);
 _nextGeneration[i] = child;
 }

 for (int j = 0; j < _size; j++)

 43

 delete _genotypes[j];

 delete [] _genotypes;

 _genotypes = _nextGeneration;
 _generation++;
}

9.3.16 ProximitySensor.h
#ifndef ProximitySensor_H
#define ProximitySensor_H

// Description: Simulated infrared sensor
// Author: Yvan Bourquin

class Tank;
class Graphics;

#include "Vector2.h"
#include "Line2.h"

class ProximitySensor
{
public:
 // constructor:
 // tank: the tank which this sensor belongs to
 // x, y: position of the sensor in the tank coordi nate system
 // dx, dy: direction of the sensor ray in tank coo rdinate system
 ProximitySensor(const Tank *tank, double x, double y,
 double dx, double dy);

 // draw sensor ray as a line
 // The color changes when the ray intesects an obs tacle
 void draw(const Graphics *graphics) const;

 // check intersection and update output
 void update();

 // return a number in the range [0,1] inversely pr oportional
 // to the distance to the nearest obstacle.
 // returns 0.0 if there is no obstacle in the sens ed range
 // returns 1.0 if there is an obstacle right in fr ont of sensor
 double getOutput() const;

 // toggle visibility flag of all proximity sensors
 static void toggleVisibility() { _visible = ! _vis ible; }

private:
 const Tank *_tank;
 Vector2 _position;
 Vector2 _direction;
 Line2 _ray;

 static bool _visible;
};

 44

#endif

9.3.17 ProximitySensor.cpp
#include "ProximitySensor.h"
#include "Graphics.h"
#include "Tank.h"
#include "Simulator.h"

static const double MAX_RANGE = 20.0;

bool ProximitySensor::_visible = true;

ProximitySensor::ProximitySensor(const Tank *tank, double x, double y,
 double dx, double dy)
: _tank(tank), _position(x, y)
{
 _direction = Vector2(dx, dy).normalized();
}

void ProximitySensor::draw(const Graphics *graphics) const
{
 if (! _visible)
 return;

 graphics->setLineWidth(1.0);
 if (_ray.length() < MAX_RANGE)
 graphics->setColor(1, 0, 0); // red
 else
 graphics->setColor(0, 1, 0); // green

 graphics->drawLine(_ray);
}

double ProximitySensor::getOutput() const
{
 return 1.0 - _ray.length() / MAX_RANGE;
}

void ProximitySensor::update()
{
 // compute new ray position and direction
 _ray = Line2(_position, _position + _direction * M AX_RANGE);
 _ray.rotate(-_tank->getAlpha());
 _ray.translate(_tank->getPosition());

 Simulator *simulator = Simulator::instance();
 int N = simulator->getNumObstacles();

 // for each potential obstacle
 for (int i = 0; i < N; i++)
 {
 const Obstacle *obstacle = simulator->getObstacle (i);

 // don't check collision with own tank
 if (obstacle != _tank)
 {

 45

 Quad2 bounds = obstacle->getBounds();
 for (int j = 0; j < 4; j++)
 {
 // check intersection
 Vector2 intersect = _ray.intersects(bounds.getL ine(j));

 if (intersect != Line2::NO_INTERSECT)
 {
 double distance = _ray.a().distance(intersect) ;
 if (distance < _ray.length())
 _ray.b() = intersect;
 }
 }
 }
 }
}

9.3.18 Quad2.h
#ifndef Quad2_H
#define Quad2_H

// Description: Four-side polygon used as a primiti ve for collision
// detection and for graphics.
// Author: Yvan Bourquin

#include "Vector2.h"
#include "Line2.h"

class ostream;

class Quad2
{
public:
 // constructors
 Quad2() : _a(-1, 1), _b(1, 1), _c(1, -1), _d(-1, - 1) {}
 Quad2(const Quad2 &q) : _a(q._a), _b(q._b), _c(q._ c), _d(q._d) {}
 Quad2(const Vector2 &a, const Vector2 &b,
 const Vector2 &c, const Vector2 &d);
 Quad2(double ax, double ay, double bx, double by,
 double cx, double cy, double dx, double dy);

 // assignement operator
 Quad2 &operator = (const Quad2 &q);

 // geometrical operations
 void translate(Vector2 t);
 void translate(double tx, double ty);
 void rotate(double angle);

 // read-only members access
 const Vector2 &a() const { return _a; }
 const Vector2 &b() const { return _b; }
 const Vector2 &c() const { return _c; }
 const Vector2 &d() const { return _d; }

 // return two quad corners as a Line2 object

 46

 Line2 getLine(int index) const;

 // intersection detection
 bool intersects(const Quad2 &quad) const;
 bool intersects(const Line2 &line) const;

 // print quad to output stream
 friend ostream &operator << (ostream &, const Quad 2 &);

private:
 Vector2 _a, _b, _c, _d;
};

inline Quad2 &Quad2::operator = (const Quad2 &q)
{
 _a = q._a;
 _b = q._b;
 _c = q._c;
 _d = q._d;
 return *this;
};

#endif

9.3.19 Quad2.cpp
#include "Quad2.h"

Quad2::Quad2(const Vector2 &a, const Vector2 &b,
 const Vector2 &c, const Vector2 &d)
: _a(a), _b(b), _c(c), _d(d) {}

Quad2::Quad2(double ax, double ay, double bx, doubl e by,
 double cx, double cy, double dx, double dy)
: _a(ax, ay), _b(bx, by), _c(cx, cy), _d(dx, dy) {}

void Quad2::translate(Vector2 t)
{
 _a += t;
 _b += t;
 _c += t;
 _d += t;
}

void Quad2::translate(double tx, double ty)
{
 Vector2 t(tx, ty);
 _a += t;
 _b += t;
 _c += t;
 _d += t;
}

void Quad2::rotate(double angle)
{
 _a.rotate(angle);
 _b.rotate(angle);

 47

 _c.rotate(angle);
 _d.rotate(angle);
}

Line2 Quad2::getLine(int index) const
{
 switch (index)
 {
 case 0: return Line2(_a, _b);
 case 1: return Line2(_b, _c);
 case 2: return Line2(_c, _d);
 case 3: return Line2(_d, _a);
 }

 return Line2(_d, _a);
}

bool Quad2::intersects(const Quad2 &that) const
{
 for (int i = 0; i < 4; i++)
 for (int j = 0; j < 4; j++) {
 Line2 a = getLine(i);
 Line2 b = that.getLine(j);
 if (a.intersects(b) != Line2::NO_INTERSECT)
 return true;
 }

 return false;
}

bool Quad2::intersects(const Line2 &b) const
{
 for (int i = 0; i < 4; i++)
 {
 Line2 a = getLine(i);
 if (a.intersects(b) != Line2::NO_INTERSECT)
 return true;
 }

 return false;
}

ostream &operator << (ostream &os, const Quad2 &q)
{
 cout << "[" << q._a << q._b << q._c << q._d << "]" ;
 return os;
}

9.3.20 Random.h
#ifndef Random_H
#define Random_H

// Description: Random number utilities
// Author: Yvan Bourquin
// Implementation of getGaussian()
// taken over from Dr. Everett F. Cart er Jr.

 48

// http://www.taygeta.com/random/gauss ian.htm

class Random
{
public:
 // return random number between [0;1] from a unifo rm
 // distribution
 static double getUniform();

 // return random integer number between [0;max-1] from a
 // uniform distribution
 static int getInteger(int max);

 // return random number from a Gaussian distributi on with
 // mean 0 and standard deviation 1
 static double getGaussian();

private:
 Random() {} // disabled constructor
};

#endif

9.3.21 Random.cpp
#include "Random.h"
#include <math.h>
#include <stdlib.h>

const double PI = 3.1415926535;

double Random::getUniform()
{
 return (double)rand() / (double)RAND_MAX;
}

double Random::getGaussian()
{
 static bool flag = true;
 static double y2;

 if (flag)
 {
 double x1, x2, w;
 do
 {
 x1 = 2.0 * getUniform() - 1.0;
 x2 = 2.0 * getUniform() - 1.0;
 w = x1 * x1 + x2 * x2;
 } while (w >= 1.0);

 w = sqrt((-2.0 * log(w)) / w);
 double y1 = x1 * w;
 y2 = x2 * w;

 flag = false;

 49

 return y1;
 }

 flag = true;

 return y2;
}

int Random::getInteger(int max)
{
 return rand() % max;
}

9.3.22 Shell.h
#ifndef Shell_H
#define Shell_H

// Description: Simulated tank gun shell
// Author: Yvan Bourquin

#include "Line2.h"
#include "Vector2.h"

class Graphics;
class Tank;

class Shell
{
public:
 // create shell with initial position and orientat ion
 Shell(const Tank *tank, const Vector2 &position,
 double directionAngle);

 // move shell of one step
 void update();

 // draw shell as a black this line
 void draw(const Graphics *graphics) const;

 // set to true after the shell has collided with a n obstacle
 bool isExploded() const { return _exploded; }

private:
 const Tank *_tank; // tank that fired the shell
 Line2 _body; // shell body
 Vector2 _direction; // flight direction
 bool _exploded; // collided
};

#endif

9.3.23 Shell.cpp
#include "Shell.h"

#include "Simulator.h"

 50

#include "Obstacle.h"
#include "Quad2.h"
#include "Graphics.h"

static const Line2 BODY(-2, 0, 2, 0); // heading ea st
static const double SPEED = 3.0; // shorter th an body length

Shell::Shell(const Tank *tank, const Vector2 &posit ion,
 double directionAngle)
 : _tank(tank), _direction(1, 0), _exploded(false)
{
 _body = BODY;
 _body.rotate(-directionAngle);
 _body.translate(position);

 _direction.rotate(-directionAngle);
 _direction.normalize();
 _direction = _direction * SPEED;
}

void Shell::update()
{
 // fly
 _body.translate(_direction);

 Simulator *simulator = Simulator::instance();

 // for every obstacle in the simulator ...
 for (int i = 0; i < simulator->getNumObstacles(); i++)
 {
 Obstacle *obstacle = simulator->getObstacle(i);

 // don't check collision with own tanks
 if (obstacle != (Obstacle*)_tank)
 {
 // check collision with other object
 const Quad2 &bounds = obstacle->getBounds();
 if (bounds.intersects(_body))
 _exploded = true;
 }
 }
}

void Shell::draw(const Graphics *graphics) const
{
 graphics->setColor(0, 0, 0);
 graphics->setLineWidth(3.0);
 graphics->drawLine(_body);
}

9.3.24 Simulator.h
#ifndef Simulator_H
#define Simulator_H

// Description: Simulator for tanks with a rectangu lar arena and walls
// Author: Yvan Bourquin

 51

class Tank;
class AutoTank;
class Graphics;
class Wall;
class Obstacle;
class Population;

class Simulator
{
public:
 // draw simulation in normal mode
 void draw(const Graphics *graphics) const;

 // draw simulation in neural network mode
 void drawNetwork(const Graphics *graphics) const;

 // update position of every object
 void update();

 // a numerical key was pressed
 void numberPressed(int num);

 // access obstacles (walls and tanks)
 int getNumObstacles() const;
 Obstacle *getObstacle(int index) const;

 // access tanks of a group
 int getNumTanks() const;
 Tank *getTank(int index) const;

 // return unique simulator instance
 static Simulator *instance();

 // number of time steps in a single fight
 static const int NUM_UPDATES;

private:
 Wall **_walls;
 AutoTank **_tanks;
 Population *_driverPopulation; // population of st eering genotypes
 Population *_gunnerPopulation; // population of ai ming genotypes
 int _groupCount; // group number of current generation
 int _fightCount; // fight number of the current group
 int _updateCount; // update number of the current fight
 double *_steeringFitness; // temporary array for computing mean
 double *_aimingFitness; // temporary array for computing mean

 // disabled constructor and destructor
 Simulator();
 virtual ~Simulator();

 // local methods
 void startGeneration();
 void endGeneration();
 void startGroup();
 void endGroup();

 52

 void startFight();
 void endFight();
};

#endif

9.3.25 Simulator.cpp
#include "Simulator.h"

#include "AutoTank.h"
#include "Wall.h"
#include "Graphics.h"
#include "Population.h"
#include "Random.h"

const int Simulator::NUM_UPDATES = 4000; // # of ti me steps in a fight
static const int POPULATION_SIZE = 100; // # of ge notypes in population
static const int GROUP_SIZE = 2; // # of protagon ists in a fight
static const int NUM_FIGHTS = 5; // # of fights t o average fitness
static const int NUM_WALLS = 5; // # of walls in the arena

static const double PI = 3.1415926535;

static const char *DRIVERS_POPULATION_FILE = "drive rs.txt";
static const char *GUNNERS_POPULATION_FILE = "gunne rs.txt";

static Simulator *theInstance = NULL;

Simulator *Simulator::instance()
{
 if (! theInstance)
 theInstance = new Simulator();

 return theInstance;
}

Simulator::Simulator()
{
 _walls = new Wall*[NUM_WALLS];

 _walls[0] = new Wall(140, 80, 140, 0, 0, 0, 0, 80) ;
 _walls[1] = new Wall(40, 60, 40, 40, 20, 20, 20, 6 0);
 _walls[2] = new Wall(100, 80, 80, 60, 60, 60, 60, 80);
 _walls[3] = new Wall(80, 20, 80, 0, 40, 0, 60, 20) ;
 _walls[4] = new Wall(120, 60, 120, 20, 100, 20, 10 0, 40);

 _tanks = new AutoTank*[GROUP_SIZE];

 _driverPopulation = new Population(POPULATION_SIZE ,
 AutoTank::getSteeringCodeSize());
 _driverPopulation->load(DRIVERS_POPULATION_FILE);

 _gunnerPopulation = new Population(POPULATION_SIZE ,
 AutoTank::getAimingCodeSize());
 _gunnerPopulation->load(GUNNERS_POPULATION_FILE);

 53

 _steeringFitness = new double[GROUP_SIZE];
 _aimingFitness = new double[GROUP_SIZE];

 startGeneration();
 startGroup();
 startFight();
}

Simulator::~Simulator()
{
 delete _aimingFitness;
 delete _steeringFitness;

 delete _gunnerPopulation;
 delete _driverPopulation;

 delete [] _tanks;

 for (int i = 0; i < NUM_WALLS; i++)
 delete _walls[i];

 delete _walls;
}

Obstacle *Simulator::getObstacle(int index) const
{
 if (index < NUM_WALLS)
 return _walls[index];

 return _tanks[index - NUM_WALLS];
}

int Simulator::getNumObstacles() const
{
 return NUM_WALLS + GROUP_SIZE;
}

int Simulator::getNumTanks() const
{
 return GROUP_SIZE;
}

Tank *Simulator::getTank(int index) const
{
 return _tanks[index];
}

void Simulator::startGeneration()
{
 _groupCount = 0;
}

void Simulator::startGroup()
{
 _fightCount = 0;

 for (int i = 0; i < GROUP_SIZE; i++)

 54

 {
 _steeringFitness[i] = 0.0;
 _aimingFitness[i] = 0.0;
 }
}

void Simulator::startFight()
{
 _updateCount = 0;

 for (int i = 0; i < GROUP_SIZE; i++)
 {
 // place tank 0 on the left and tank 1 on the rig ht of the arena
 double x = i == 0 ? 10 : 130;
 double y = Random::getUniform() * 60.0 + 10.0;

 // give initial random orientation
 double alpha = Random::getUniform() * 2 * PI;

 // get genotype from population
 const double *driverCode =
 _driverPopulation->getGenes(_groupCount * GROUP_ SIZE + i);
 const double *gunnerCode =
 _gunnerPopulation->getGenes(_groupCount * GROUP_ SIZE + i);

 // create phenotype using genotype
 _tanks[i] = new AutoTank(Vector2(x, y),
 alpha, driverCode, gunnerCode);
 }

 cout << "generation: [" << _driverPopulation->get Generation()
 << ' ' << _gunnerPopulation->getGeneration() << "]"
 << ", clique: " << _groupCount << ", fight: "
 << _fightCount << endl;
}

void Simulator::endFight()
{
 for (int i = 0; i < GROUP_SIZE; i++)
 {
 double steeringFitness = _tanks[i]->getSteeringFi tness();
 double aimingFitness = _tanks[i]->getAimingFitnes s();

 cout << "tanks[" << i << "]: fight fitness: drive r: "
 << steeringFitness << ", gunner: " << aimingFitn ess << endl;

 // add to total fitness for averaging
 _steeringFitness[i] += steeringFitness;
 _aimingFitness[i] += aimingFitness;

 // detroy phenotypes
 delete _tanks[i];
 }

 _fightCount++;
}

 55

void Simulator::endGroup()
{
 for (int i = 0; i < GROUP_SIZE; i++)
 {
 // compute average fitness
 _steeringFitness[i] /= NUM_FIGHTS;
 _aimingFitness[i] /= NUM_FIGHTS;

 cout << "tanks[" << i << "]: mean fitness: driver : "
 << _steeringFitness[i] << ", gunner: "
 << _aimingFitness[i] << endl;

 // store fitness in population for rank selection later on
 _driverPopulation->setFitness(
 _groupCount * GROUP_SIZE + i, _steeringFitness[i]);
 _gunnerPopulation->setFitness(
 _groupCount * GROUP_SIZE + i, _aimingFitness[i]) ;
 }

 _groupCount++;
}

void Simulator::endGeneration()
{
 _driverPopulation->sort();
 _driverPopulation->save(DRIVERS_POPULATION_FILE);
 _driverPopulation->reproduce();

 _gunnerPopulation->sort();
 _gunnerPopulation->save(GUNNERS_POPULATION_FILE);
 _gunnerPopulation->reproduce();
}

// iteration controller
void Simulator::update()
{
 for (int i = 0; i < GROUP_SIZE; i++)
 _tanks[i]->update();

 _updateCount++;

 if (_updateCount >= NUM_UPDATES)
 {
 endFight();
 if (_fightCount >= NUM_FIGHTS)
 {
 endGroup();
 if (_groupCount >= POPULATION_SIZE / GROUP_SIZE)
 {
 endGeneration();
 startGeneration();
 }

 startGroup();
 }

 startFight();

 56

 }
}

void Simulator::draw(const Graphics *graphics) cons t
{
 graphics->preRender();

 for (int i = 0; i < getNumObstacles(); i++)
 getObstacle(i)->draw(graphics);

 graphics->flush();
}

void Simulator::drawNetwork(const Graphics *graphic s) const
{
 graphics->preRender();

 _tanks[0]->drawNetwork(graphics);

 graphics->flush();
}

void Simulator::numberPressed(int num)
{
 if (num < GROUP_SIZE)
 _tanks[num]->toggleTrackVisible();
}

9.3.26 Tank.h
#ifndef Tank_H
#define Tank_H

// Description: Base class for tanks, from this cla ss
// autonomous or user-contolled tanks can be derived
// Author: Yvan Bourquin

class Graphics;
class ProximitySensor;
class VisionSensor;
class Track;
class Shell;

#include "Obstacle.h"
#include "Vector2.h"
#include "Quad2.h"

class Tank : public Obstacle
{
public:
 // destructor
 virtual ~Tank();

 // update sensors, move to next position unless a collision occurs
 virtual void update();

 // draw at current angle and position

 57

 virtual void draw(const Graphics *graphics) const;

 // get current position
 // position of the centre of the body
 const Vector2 &getPosition() const { return _posit ion; }

 // tank/turret rotation angle.
 // zero when facing east, then clockwise in radian s.
 // values are not bounded and might exceed range [-pi;pi]
 double getAlpha() const { return _alpha; } // tank
 double getBeta() const { return _beta; } // turr et

 // return fitness
 double getSteeringFitness() const { return _steeri ngFitness; }
 double getAimingFitness() const { return _aimingFi tness; }

 // make tank trace visible/invisible
 void toggleTrackVisible() { _trackVisible = ! _tra ckVisible; }

 // for derived class
 static const int NUM_PROXIMITY_SENSORS;
 static const int NUM_BODY_MOTORS;
 static const int NUM_VISION_SENSORS;
 static const int NUM_TURRET_MOTORS;

protected:
 // constructor available for derived classes only
 Tank(const Vector2 &initialPosition, double alpha) ;

 // set motor speed and turret speed
 void setLeftSpeed(double speed);
 void setRightSpeed(double speed);
 void setTurretRotationSpeed(double speed);

 // get sensor output
 double getSensorOutput(int index) const;
 double getTurretSensorOutput(int index) const;

private:
 double _alpha; // body rotation angle
 double _beta; // turret rotation angle
 double _leftSpeed; // left motor speed
 double _rightSpeed; // right motor speed
 double _turretRotationSpeed;
 Vector2 _position;
 ProximitySensor **_proximitySensors;
 VisionSensor **_visionSensors;
 double _steeringFitness;
 double _aimingFitness;
 Track *_track;
 bool _trackVisible;
 Quad2 _turretBounds;
 Quad2 _gunBounds;
 Shell *_shell;

 // local methods
 void bodyTransform();

 58

 void turretTransform();
 bool willCollide(const Vector2 &destination, doubl e angle) const;
};

#endif

9.3.27 Tank.cpp
#include "Tank.h"
#include "Graphics.h"
#include "ProximitySensor.h"
#include "VisionSensor.h"
#include "Simulator.h"
#include "Track.h"
#include "Shell.h"

const double WIDTH = 4; // tank body width
const double LENGTH = 6; // tank body length

const int Tank::NUM_PROXIMITY_SENSORS = 6;
const int Tank::NUM_BODY_MOTORS = 2;
const int Tank::NUM_VISION_SENSORS = 6;
const int Tank::NUM_TURRET_MOTORS = 2;

static const Quad2 BOUNDS(LENGTH / 2, WIDTH / 2, LE NGTH / 2,
 -WIDTH / 2, -LENGTH / 2, -WIDTH / 2,
 -LENGTH / 2, WIDTH / 2);
static const Quad2 TURRET_BOUNDS(0, 1, 0, -1, -2, - 1, -2, 1);
static const Quad2 GUN_BOUNDS(2, 0.5, 2, -0.5, 0, - 0.5, 0, 0.5);

static const double TURRET_SENSOR_WEIGHTS[Tank::NUM _VISION_SENSORS]
 = { 0.1, 0.3, 1.0, 1.0, 0.3, 0.1 };
static const double MAX_SPEED = 0.4;
static const double MAX_BACK_SPEED = 0.2;
static const double MAX_TURRET_ROTATION_SPEED = 0.1 ;
static const double PI = 3.141592;

Tank::Tank(const Vector2 &position, double alpha)
: _alpha(alpha), _beta(alpha), _leftSpeed(0.0), _ri ghtSpeed(0.0),
 _turretRotationSpeed(0.0),
_position(position), _steeringFitness(0.0), _aiming Fitness(0.0)
{
 _track = new Track(position);
 _trackVisible = false;
 _shell = NULL;

 bodyTransform();
 turretTransform();

 _proximitySensors = new ProximitySensor*[NUM_PROXI MITY_SENSORS];

 _proximitySensors[0] = new ProximitySensor(this, - 3, 2, -2, 1);
 _proximitySensors[1] = new ProximitySensor(this, 2, 2, 1, 1);
 _proximitySensors[2] = new ProximitySensor(this, 3, 2, 1, 0);
 _proximitySensors[3] = new ProximitySensor(this, 3, -2, 1, 0);
 _proximitySensors[4] = new ProximitySensor(this, 2, -2, 1, -1);
 _proximitySensors[5] = new ProximitySensor(this, - 3, -2, -2, -1);

 59

 _visionSensors = new VisionSensor*[NUM_VISION_SENS ORS];

 _visionSensors[0] = new VisionSensor(this, 0, 1.0 , 4, 1);
 _visionSensors[1] = new VisionSensor(this, 0, 0.6 , 8, 1);
 _visionSensors[2] = new VisionSensor(this, 0, 0.2 , 24, 1);
 _visionSensors[3] = new VisionSensor(this, 0, -0.2 , 24, -1);
 _visionSensors[4] = new VisionSensor(this, 0, -0.6 , 8, -1);
 _visionSensors[5] = new VisionSensor(this, 0, -1.0 , 4, -1);
}

Tank::~Tank()
{
 if (_shell)
 delete _shell;

 for (int j = 0; j < NUM_VISION_SENSORS; j++)
 delete _visionSensors[j];

 delete [] _visionSensors;

 for (int i = 0; i < NUM_PROXIMITY_SENSORS; i++)
 delete _proximitySensors[i];

 delete [] _proximitySensors;

 delete _track;
}

void Tank::update()
{
 double averageSpeed = (_leftSpeed + _rightSpeed) / 2.0;
 double alpha = _alpha + (_leftSpeed - _rightSpeed) / 10.0;

 Vector2 direction;
 direction.x() = cos(- alpha);
 direction.y() = sin(- alpha);

 Vector2 destination = _position + direction * aver ageSpeed;
 if (willCollide(destination, alpha))
 {
 setLeftSpeed(0.0);
 setRightSpeed(0.0);
 averageSpeed = 0.0;
 }
 else
 {
 _alpha = alpha;
 _position = destination;
 _track->addStep(_position);
 bodyTransform();
 }

 _beta += _turretRotationSpeed;

 turretTransform();

 60

 double maxActivity = -999.9;
 for (int i = 0; i < NUM_PROXIMITY_SENSORS; i++)
 {
 _proximitySensors[i]->update();
 if (_proximitySensors[i]->getOutput() > maxActivi ty)
 maxActivity = _proximitySensors[i]->getOutput();
 }

 double deltaAimingFitness = 0.0;
 for (int j = 0; j < NUM_VISION_SENSORS; j++)
 {
 _visionSensors[j]->update();
 double output = _visionSensors[j]->getOutput() > 0.0 ? 1.0 : 0.0;
 deltaAimingFitness += output * TURRET_SENSOR_WEIG HTS[j];
 }

 if (_shell)
 {
 if (_shell->isExploded())
 {
 delete _shell;
 _shell = NULL;
 }
 else
 _shell->update();
 }
 else if (deltaAimingFitness >= 1.0)
 _shell = new Shell(this, _position, _beta);

 // steering fitness function
 double deltaSpeed = fabs(_leftSpeed - _rightSpeed) /
 (MAX_SPEED + MAX_BACK_SPEED);
 double deltaSteeringFitness = averageSpeed / MAX_S PEED
 * (1.0 - sqrt(deltaSpeed)) * (1.0 - maxActivity);

 _steeringFitness += deltaSteeringFitness;
 _aimingFitness += deltaAimingFitness;
}

void Tank::setLeftSpeed(double speed)
{
 _leftSpeed += (speed - _leftSpeed) / 2.0;

 if (_leftSpeed > MAX_SPEED)
 _leftSpeed = MAX_SPEED;
 else if (_leftSpeed < -MAX_BACK_SPEED)
 _leftSpeed = -MAX_BACK_SPEED;
}

void Tank::setRightSpeed(double speed)
{
 _rightSpeed += (speed - _rightSpeed) / 2.0;

 if (_rightSpeed > MAX_SPEED)
 _rightSpeed = MAX_SPEED;
 else if (_rightSpeed < -MAX_BACK_SPEED)
 _rightSpeed = -MAX_BACK_SPEED;

 61

}

void Tank::setTurretRotationSpeed(double speed)
{
 if (fabs(speed) < MAX_TURRET_ROTATION_SPEED)
 _turretRotationSpeed = speed;
}

bool Tank::willCollide(const Vector2 &destination, double angle) const
{
 if (destination == _position && angle == _alpha)
 return false;

 Quad2 bounds = BOUNDS;
 bounds.rotate(-angle);
 bounds.translate(destination);
 Simulator *simulator = Simulator::instance();

 // for every object in the simulator ...
 for (int j = 0; j < simulator->getNumObstacles(); j++)
 {
 const Obstacle *obstacle = simulator->getObstacle (j);

 // don't detect collision with self
 if (obstacle != this)
 {
 if (bounds.intersects(obstacle->getBounds()))
 return true;
 }
 }

 // there was no collision detected
 return false;
}

// compute new body coordinates
void Tank::bodyTransform()
{
 _bounds = BOUNDS;
 _bounds.rotate(-_alpha);
 _bounds.translate(_position);
}

// compute new turret coordinates
void Tank::turretTransform()
{
 _turretBounds = TURRET_BOUNDS;
 _turretBounds.rotate(-_beta);
 _turretBounds.translate(_position);

 _gunBounds = GUN_BOUNDS;
 _gunBounds.rotate(-_beta);
 _gunBounds.translate(_position);
}

void Tank::draw(const Graphics *graphics) const
{

 62

 if (_trackVisible)
 _track->draw(graphics);

 // draw tank body
 graphics->setColor(0.6f, 0.6f, 0.6f);
 graphics->drawSolidQuad(_bounds);

 // draw tank turret
 graphics->setColor(0.2f, 0.2f, 0.2f);
 graphics->drawSolidQuad(_turretBounds);
 graphics->drawSolidQuad(_gunBounds);

 // draw body sensors
 for (int i = 0; i < NUM_PROXIMITY_SENSORS; i++)
 _proximitySensors[i]->draw(graphics);

 // draw turret sensors
 for (int j = 0; j < NUM_VISION_SENSORS; j++)
 _visionSensors[j]->draw(graphics);

 if (_shell)
 _shell->draw(graphics);
}

double Tank::getSensorOutput(int index) const
{
 return _proximitySensors[index]->getOutput();
}

double Tank::getTurretSensorOutput(int index) const
{
 return _visionSensors[index]->getOutput();
}

9.3.28 Track.h
#ifndef Track_H
#define Track_H

// Description: Tank track for drawing in simulator
// Author: Yvan Bourquin

#include "Vector2.h"

class Graphics;

class Track
{
public:
 // constructor: create track with initial step
 Track(const Vector2 &initialStep);

 // destructor
 virtual ~Track();

 // add tank current position
 void addStep(const Vector2 &step);

 63

 // draw track using graphic context
 void draw(const Graphics *graphics) const;

private:
 Vector2 *_steps;
 int _numSteps;
};

#endif

9.3.29 Track.cpp
#include "Track.h"
#include "Simulator.h"
#include "Graphics.h"
#include <assert.h>

Track::Track(const Vector2 &initialStep)
{
 _steps = new Vector2[Simulator::NUM_UPDATES + 1];
 _numSteps = 0;
 addStep(initialStep);
}

Track::~Track()
{
 delete [] _steps;
}

void Track::addStep(const Vector2 &step)
{
 assert(_numSteps < Simulator::NUM_UPDATES + 1);

 // if coordinates haven't changed, there is no nee d to store them
 if (step == _steps[_numSteps - 1])
 return;

 _steps[_numSteps] = step;
 _numSteps++;
}

void Track::draw(const Graphics *graphics) const
{
 graphics->setColor(0, 0, 1);
 graphics->setLineWidth(2.0);

 for (int i = 1; i < _numSteps; i++)
 graphics->drawLine(_steps[i - 1], _steps[i]);
}

9.3.30 Vector.h
#ifndef Vector_H
#define Vector_H

// Description: General purpose N-dimensions vector

 64

// Author: Yvan Bourquin

#include <assert.h>

class ostream;

class Vector
{
public:
 // constructors
 Vector();
 Vector(int size);
 Vector(const Vector &other);

 // destructor
 ~Vector();

 // read-only element access
 double operator [] (int index) const;

 // read/write element access
 double &operator [] (int index);

 // assignment operator
 Vector &operator = (const Vector &);

 // unary + and - operators
 Vector operator + () const { return *this; }
 Vector operator - () const { return 0.0 - *this ; }

 // vector-vector operations
 Vector operator + (const Vector &) const;
 Vector operator - (const Vector &) const;
 Vector operator * (const Vector &) const;
 Vector operator / (const Vector &) const;

 // dot product
 double dot(const Vector &) const;

 // vector-scalar operations
 Vector operator + (double) const;
 Vector operator - (double) const;
 Vector operator * (double) const;
 Vector operator / (double) const;

 // print vector to output stream
 friend ostream &operator << (ostream &, const Vect or &);

 // scalar-vector operations
 friend Vector operator + (double, const Vector &);
 friend Vector operator - (double, const Vector &);
 friend Vector operator * (double, const Vector &);
 friend Vector operator / (double, const Vector &);

 // vector size
 int size() const { return N; }

 65

 // set all elements to zero
 void zero();

 // set default vector size when calling default co nstructor
 static void setDefaultSize(int size) { defaultSize = size; }

private:
 double *a; // elements
 const int N; // size

 static int defaultSize;
};

inline void Vector::zero()
{
 for (int i = 0; i < N; i++)
 a[i] = 0.0;
}

inline double Vector::operator [] (int index) const
{
 assert(index >= 0 && index < N);
 return a[index];
}

inline double &Vector::operator [] (int index)
{
 assert(index >= 0 && index < N);
 return a[index];
}

inline Vector::Vector()
 : N(defaultSize)
{
 a = new double[N];
}

inline Vector::Vector(int size)
 : N(size)
{
 a = new double[N];
}

inline Vector::Vector(const Vector &other)
 : N(other.N)
{
 a = new double[N];
 for (int n = 0; n < N; n++)
 a[n] = other.a[n];
}

inline Vector::~Vector()
{
 delete [] a;
}

inline Vector &Vector::operator = (const Vector &ot her)

 66

{
 assert(N == other.N);
 for (int n = 0; n < N; n++)
 a[n] = other.a[n];

 return *this;
}

inline Vector Vector::operator + (const Vector &oth er) const
{
 assert(N == other.N);

 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] + other.a[n];

 return y;
}

inline Vector Vector::operator - (const Vector &oth er) const
{
 assert(N == other.N);

 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] - other.a[n];

 return y;
}

inline Vector Vector::operator * (const Vector &oth er) const
{
 assert(N == other.N);

 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] * other.a[n];

 return y;
}

inline Vector Vector::operator / (const Vector &oth er) const
{
 assert(N == other.N);

 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] / other.a[n];

 return y;
}

inline double Vector::dot(const Vector &other) cons t

 67

{
 assert(N == other.N);

 double d = 0.0;
 for (int n = 0; n < N; n++)
 d += a[n] * other.a[n];

 return d;
}

inline Vector Vector::operator + (double d) const
{
 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] + d;

 return y;
}

inline Vector Vector::operator - (double d) const
{
 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] - d;

 return y;
}

inline Vector Vector::operator * (double d) const
{
 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] * d;

 return y;
}

inline Vector Vector::operator / (double d) const
{
 Vector y(N);

 for (int n = 0; n < N; n++)
 y.a[n] = a[n] / d;

 return y;
}

inline Vector operator + (double d, const Vector &o ther)
{
 Vector y(other.N);

 for (int n = 0; n < other.N; n++)
 y.a[n] = d + other.a[n];

 68

 return y;
}

inline Vector operator - (double d, const Vector &o ther)
{
 Vector y(other.N);

 for (int n = 0; n < other.N; n++)
 y.a[n] = d - other.a[n];

 return y;
}

inline Vector operator * (double d, const Vector &o ther)
{
 Vector y(other.N);

 for (int n = 0; n < other.N; n++)
 y.a[n] = d * other.a[n];

 return y;
}

inline Vector operator / (double d, const Vector &o ther)
{
 Vector y(other.N);

 for (int n = 0; n < other.N; n++)
 y.a[n] = d / other.a[n];

 return y;
}

#endif

9.3.31 Vector.cpp
#include "Vector.h"
#include <iostream.h>

int Vector::defaultSize = 1;

ostream &operator << (ostream &os, const Vector &v)
{
 os << "[";
 for (int n = 0; n < v.N; n++)
 os << v.a[n] << " ";
 os << "]";

 return os;
}

9.3.32 Vector2.h
#ifndef Vector2_H
#define Vector2_H

 69

// Description: Two-dimensional vector and operatio ns
// Author: Yvan Bourquin

#include <math.h>

class ostream;
class istream;

class Vector2 {
public:
 // default constructor, constructs a null vecto r
 Vector2(): _x(0.0), _y(0.0) {}

 // constructors given vector components
 Vector2(double x, double y) : _x(x), _y(y) {}
 Vector2(const Vector2 &v) : _x(v._x), _y(v._y) {}

 // read-only element access
 double x() const { return _x; }
 double y() const { return _y; }

 // read-write element access
 double &x() { return _x; }
 double &y() { return _y; }

 // component-wise equality comparison operators .
 int operator == (const Vector2 &) const;
 int operator != (const Vector2 &) const;

 // length-wise comparison operators.
 // example: if (v > w) ...
 int operator > (const Vector2 &) const;
 int operator < (const Vector2 &) const;
 int operator >= (const Vector2 &) const;
 int operator <= (const Vector2 &) const;

 // component-wise binary vector addition and su btraction operators.
 // examples: v + w, v - w
 Vector2 operator + (const Vector2 &) const;
 Vector2 operator - (const Vector2 &) const;

 // component-wise binary scalar multiplication and division operators.
 // examples: v * 10.0, 5.0 * v, v / 12.0
 Vector2 operator * (double) const;
 friend Vector2 operator * (double, const Vector 2 &);
 Vector2 operator / (double) const;

 // non-destructive unary + (plus) and - (minus) operators
 // examples: -v, +v
 Vector2 operator + () const { return *this; }
 Vector2 operator - () const { return Vector2(-_ x, -_y); }

 // component-wise vector addition and subtracti on operators
 // combined with assignement.
 // examples: w = v, v += w, v -= w
 Vector2 &operator = (const Vector2 &);
 Vector2 &operator += (const Vector2 &);

 70

 Vector2 &operator -= (const Vector2 &);

 // component-wise scalar multiplication and div ision operators
 // combined with assignement.
 // examples: v *= 2.0, v /= 45.0
 Vector2 &operator *= (double d);
 Vector2 &operator /= (double d);

 // Returns geometric length of vector.
 double length() const;

 // Returns geometric distance between this vector and point.
 double distance(const Vector2& point) const;

 // Changes vector to be unit length (default) o r specified length
 void normalize(double length = 1.0);

 // Creates a new normalized vector (unit length) based on this one
 Vector2 normalized() const;

 // rotate vector around origin
 void rotate(double alpha);

 // return rotated around origin version of vector
 Vector2 rotated(double alpha) const;

 // print to output stream: format: [x y]
 friend ostream &operator << (ostream &, const V ector2 &);

private:
 double _x;
 double _y;
};

inline Vector2 Vector2::operator + (const Vector2 & b) const
{
 return Vector2(_x + b._x, _y + b._y);
}

inline Vector2 Vector2::operator - (const Vector2 & b) const
{
 return Vector2(_x - b._x, _y - b._y);
}

inline Vector2 Vector2::operator * (double d) const
{
 return Vector2(_x * d, _y * d);
}

inline Vector2 Vector2::operator / (double d) const
{
 return Vector2(_x / d, _y / d);
}

inline Vector2 operator * (double d, const Vector2 &v)
{
 return Vector2(d * v._x, d * v._y);

 71

}

inline Vector2 & Vector2::operator = (const Vector2 &v)
{
 _x = v._x;
 _y = v._y;
 return *this;
}

inline Vector2 & Vector2::operator += (const Vector 2 &v)
{
 _x += v._x;
 _y += v._y;
 return *this;
}

inline Vector2 & Vector2::operator -= (const Vector 2 &v)
{
 _x -= v._x;
 _y -= v._y;
 return *this;
}

inline Vector2 & Vector2::operator *= (double d)
{
 _x *= d;
 _y *= d;
 return *this;
}

inline Vector2 & Vector2::operator /= (double d)
{
 _x /= d;
 _y /= d;
 return *this;
}

inline int Vector2::operator > (const Vector2 &b) c onst
{
 return length() > b.length() ? 1 : 0;
}

inline int Vector2::operator < (const Vector2 &b) c onst
{
 return length() < b.length() ? 1 : 0;
}

inline int Vector2::operator >= (const Vector2 &b) const
{
 return length() >= b.length() ? 1 : 0;
}

inline int Vector2::operator <= (const Vector2 &b) const
{
 return length() <= b.length() ? 1 : 0;
}

 72

inline double Vector2::length() const
{
 return sqrt(_x * _x + _y * _y);
}

inline double Vector2::distance(const Vector2& poin t) const
{
 return (*this - point).length();
}

inline int Vector2::operator == (const Vector2 &v) const
{
 return _x == v._x && _y == v._y;
}

inline int Vector2::operator != (const Vector2 &v) const
{
 return _x != v._x || _y != v._y;
}

inline void Vector2::normalize(double newLength)
{
 double d = 1.0 / length() * newLength;
 _x *= d;
 _y *= d;
}

inline Vector2 Vector2::normalized() const
{
 Vector2 r(*this);
 r.normalize();
 return r;
}

#endif

9.3.33 Vector2.cpp
#include "Vector2.h"
#include <iostream.h>

void Vector2::rotate(double alpha)
{
 Vector2 b;
 b._x = _x * cos(alpha) - _y * sin(alpha);
 b._y = _x * sin(alpha) + _y * cos(alpha);
 *this = b;
}

Vector2 Vector2::rotated(double alpha) const
{
 Vector2 b;
 b._x = _x * cos(alpha) - _y * sin(alpha);
 b._y = _x * sin(alpha) + _y * cos(alpha);
 return b;
}

 73

ostream &operator << (ostream &os, const Vector2 &v)
{
 os << '[' << v._x << ", " << v._y << ']';
 return os;
}

9.3.34 VisionSensor.h
#ifndef VisionSensor_H
#define VisionSensor_H

// Description: Sensor sensitive to tanks only
// Author: Yvan Bourquin

class Tank;
class Graphics;

#include "Line2.h"

class VisionSensor
{
public:
 // constructor:
 // tank: the tank which this sensor belongs to
 // x, y: position of the sensor in tank coordinate system
 // dx, dy: direction of the sensor ray in tank coo rdinate system
 VisionSensor(const Tank *tank, double x, double y,
 double dx, double dy);

 // draw using graphic context
 void draw(const Graphics *graphics) const;

 // update sensor output
 void update();

 // return a number in the range [0,1] inversely pr oportional
 // to the distance to the nearest tank in the sens or ray
 // returns 0.0 if there is no tank the sensed rang e
 // returns 1.0 if there is a tank right in front o f the sensor
 double getOutput() const { return _output; }

 // toggle visibility flag of all vision sensors
 static void toggleVisibility() { _visible = ! _vis ible; }

private:
 const Tank *_tank;
 Vector2 _position;
 Vector2 _direction;
 Line2 _ray;
 double _output;
 static bool _visible;
};

#endif

 74

9.3.35 VisionSensor.cpp
#include "VisionSensor.h"
#include "Graphics.h"
#include "Tank.h"
#include "Simulator.h"

static const double MAX_RANGE = 140.0;
bool VisionSensor::_visible = true;

VisionSensor::VisionSensor(const Tank *tank, double x, double y,
 double dx, double dy)
 : _tank(tank), _output(0.0), _position(x, y)
{
 _direction = Vector2(dx, dy).normalized();
}

void VisionSensor::draw(const Graphics *graphics) c onst
{
 if (! _visible)
 return;

 graphics->setLineWidth(1.0);
 if (_output)
 graphics->setColor(1, 0, 1);
 else
 graphics->setColor(0, 0, 1);

 graphics->drawLine(_ray);
}

void VisionSensor::update()
{
 // compute new ray position and direction
 _ray = Line2(_position, _position + _direction * M AX_RANGE);
 _ray.rotate(-_tank->getBeta());
 _ray.translate(_tank->getPosition());

 const Obstacle *_nearestObstacle = NULL;

 Simulator *simulator = Simulator::instance();
 int N = simulator->getNumObstacles();

 // for every object in the simulator
 for (int i = 0; i < N; i++)
 {
 const Obstacle *obstacle = simulator->getObstacle (i);

 // don't check intersection with own tank
 if (obstacle != _tank)
 {
 Quad2 bounds = obstacle->getBounds();
 for (int j = 0; j < 4; j++)
 {
 // check intersection
 Vector2 intersect = _ray.intersects(bounds.getL ine(j));

 75

 if (intersect!= Line2::NO_INTERSECT)
 {
 double distance = _ray.a().distance(intersect) ;
 if (distance < _ray.length())
 {
 _ray.b() = intersect;

 // remember nearest object
 _nearestObstacle = obstacle;
 }
 }
 }
 }
 }

 if (_nearestObstacle)
 _output = dynamic_cast<const Tank*>(_nearestObsta cle) ?
 1.0 - _ray.length() / MAX_RANGE : 0.0;
 else
 _output = 0.0;
}

9.3.36 Wall.h
#ifndef Wall_H
#define Wall_H

// Description: Wall for the tank simulator
// Author: Yvan Bourquin

#include "Obstacle.h"

class Graphics;

class Wall : public Obstacle
{
public:
 // construct a closed wall from [ax,ay] to [bx,by]
 // to [cx,cy] to [dx,dy] and back to [ax,ay]
 Wall(double ax, double ay, double bx, double by,
 double cx, double cy, double dx, double dy);

 // construct a wall of width "width" from [x1,y1] to [x2,y2]
 Wall(double x1, double y1, double x2, double y2, d ouble width);

 // draw using graphic context
 void draw(const Graphics *graphics) const;

private:
};

#endif

9.3.37 Wall.cpp
#include "Wall.h"
#include "Graphics.h"

 76

#include "Wall.h"

static const double PI = 3.14159265358979;

Wall::Wall(double ax, double ay, double bx, double by,
 double cx, double cy, double dx, double dy)
{
 _bounds = Quad2(ax, ay, bx, by, cx, cy, dx, dy);
}

Wall::Wall(double x1, double y1, double x2, double y2, double width)
{
 Vector2 a(x1, y1);
 Vector2 b(x2, y2);
 Vector2 r = b - a;
 r.rotate(PI / 2.0);
 r.normalize(width / 2.0);

 _bounds = Quad2(a + r, a - r, b - r, b + r);
}

void Wall::draw(const Graphics *graphics) const
{
 graphics->setColor(0, 0, 0);
 graphics->setLineWidth(3.0);
 graphics->drawLineQuad(_bounds);
}

